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Abstract

Many composites consist of a fabric structure embedded in a matrix material. As an example, in the present paper,

the case of pneumatic membranes is considered. Fibres are often made of material which shows noticeable plastic

deformation. The stiffness of the fibres determines the overall stiffness of the material such that the correct modelling of

the orthotropy of the composite is very important. In addition, the structure experiences large deformations which must

be accounted for. Suitable models for this type of materials are therefore derived in the framework of finite anisotropic

plasticity. A main problem is, however, the lack of experimental data in the literature. For this reason, a computer

model of the composite is set up for numerical experiments. In this way, sufficient data can be generated. The present

continuum mechanical model based on these ‘‘artificial’’ test data can be efficiently implemented into a finite element

formulation. Using a special integration algorithm, the non-linear equation system consisting initially of 10 equations

reduces to two non-linear scalar equations.
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1. Introduction

Many fibre-reinforced composites consist of a fabric structure embedded in a matrix material. In the case

of pneumatic membranes, the fibres are made of polyester, glass aramide or carbon fibres which have been

shown experimentally to exhibit noticeable plastic deformation. Common matrix materials are rubber,

PVC or Teflon. A realistic mathematical description of the material behaviour of the composite can only be

achieved if a sufficient number of experiments is carried out. Due to the anisotropy of the material, this is
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hardly possible in practice, since there are not enough experimental results available in the literature in

order to validate a new material model. To circumvent this difficulty, we begin here the material modelling

on the meso-scale. Using a so-called computer model, we generate artificial experimental data. The com-

puter simulation firstly serves to understand the special deformation behaviour of the composite material.
On the other hand, the data are used to derive a physically reasonable continuum mechanical model of

finite anisotropic elastoplasticity.

Anisotropic elastoplasticity has up to now mainly attracted attention in the context of crystal plasticity,

where the structural vectors in the intermediate configuration are fixed and the yield condition is formu-

lated in terms of the Schmidt stress. Refer for example to the classical works of Hill (1966), Rice (1971) and

Asaro (1983). For the computational aspects see Cuitino and Ortiz (1992) and Miehe (1996). In the present

work, the situation is different in the regard that the fibre orientations represent so-called material direc-

tions. The structural vectors transform like material line elements. In the following, this kind of material
behaviour will be described in the framework of phenomenological anisotropic modelling (in contrast to

crystal plasticity, where micromechanical effects are taken into account). To the knowledge of the author, a

concrete model for such kind of anisotropic elastoplasticity has not yet been published in the literature. In

the context of pneumatic membranes, it has to be additionally taken into account that the fibres carry load

only in tension.

In the field of phenomenological anisotropic material modelling at finite strains, several papers focus on

biomechanical problems (Holzapfel et al., 1996, 2000; Weiss et al., 1996; Bonet and Burton, 1998; Gasser

and Holzapfel, submitted for publication). Among the latter authors, only Gasser and Holzapfel (submitted
for publication) include anisotropic elastoplasticity. An alternative approach for fabric-reinforced com-

posites can be found in the recent work of Spencer (2001). Other new formulations of anisotropic material

behaviour have been proposed by Menzel and Steinmann (2001), Sansour and Kollmann (2001) and

Schmidt (2001). The work of Reese et al. (2001) includes one of the few models for the large deformation

behaviour of pneumatic membranes. This concept is, however, restricted to purely elastic material be-

haviour.

The present model is developed in three steps. Firstly (step I), experimental results available for the

polyester fibres are exploited to determine the material parameters of a one-dimensional (1D) incom-
pressible elastoplastic 1D model. The latter is inserted into the computer model, where the fibres are

modelled by means of truss elements. The rubber coating is represented by continuum elements. Using

such a detailed discretization on the meso-scale, one is able to simulate experimental tests. Note that

(computer) test data could also be obtained via a numerical homogenization procedure as it is common

in the context of crystal plasticity or metallic composites. But due to the non-linearity of the meso-stress–

strain relationships, it is in neither case possible to derive an analytical macromechanical stress–strain

relation. Thus, if one is interested to model the material behaviour phenomenologically, a conti-

nuum mechanical model has to be additionally constructed upon the characteristics of the ‘‘test’’ data (step
II).

The present model is based on the idea that plastification occurs, if a certain limit stress in the fibre is

exceeded. It is a highly challenging task to show the consistency of such a model with the dissipation in-

equality. A surprising result is the fact that the plastic deformation is represented by a symmetric tensor-

valued variable. In fact, this can be shown to be the case for more general kinds of anisotropy based on

symmetric structural tensors (see also Svendsen and Reese, submitted for publication). Thus, as in isotropic

elastoplasticity, the plastic spin remains undetermined.

The latter observation proves to be advantageous also from the numerical point of view. The number of
unknowns at the Gauss point level is noticeably reduced. In addition, by means of a suitable integration

procedure the system of originally 10 non-linear equations boils down to two non-linear equations and

eight functional evaluations. The model can therefore easily be incorporated into a finite element formu-

lation (step III).
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2. Computer model

2.1. Fibres

Fig. 1 shows ‘‘real’’ experimental results (uniaxial tension) for the two fibre directions of the fabric

(polyester threads). The stiffer thread is called warp thread, the other one-weft thread. The strain values are

given in percent and refer to the linearized strain measure DL=L (L initial length of the test sample). One

observes a noticeable permanent deformation, when unloading takes place. Note that the hysteresis visible

during reloading is not shown in the picture. In other words, we neglect the rate-dependence of the material

behaviour which is, however, rather small.

The material behaviour of the fibres seems to be somewhat rubber-like. This suggests a model which is

usually applied in the context of rubber elasticity (see Ogden, 1984). The extension to elastoplasticity is
straightforward (Table 1). In these equations, r denotes the Cauchy stress and k the stretch along the fibre

axis. It is multiplicatively decomposed into elastic (ke) and plastic (kp) parts. Using the assumption of in-

compressibility, r can be directly computed from the force F and the initial cross-sectional area A. The yield

criterion is standard besides the non-linear isotropic hardening term Hnln
v (n accumulated plastic strain).

The quantity _cc represents the plastic multiplier. The material parameters used for the fit in Fig. 1 are given

below:

warp thread : l ¼ 195:95 N=mm2; a ¼ 30:37; rY 0 ¼ 111:5 N=mm2;

Hlin ¼ 5969:49 N=mm2; Hnl ¼ 43977191 N=mm2; v ¼ 4:37;
ð1Þ

Fig. 1. Experimental results and fit for uniaxial tension.

Table 1

Constitutive model of 1D elastoplasticity

Elastic material law r ¼ lðka
e � k�0:5a

e Þ, F ¼ r A
k

Stretch k ¼ 1 þ e ð%Þ
100

¼ kekp

Yield condition U ¼ jrj � ðrY 0 þ Hlinn þ Hnln
vÞ6 0

Flow rules _kkp ¼ _cc signrkp, _nn ¼ _cc with U6 0, _ccU ¼ 0, _cc P 0
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weft thread : l ¼ 121:79 N=mm2; a ¼ 36:95; rY 0 ¼ 62:95 N=mm2;

Hlin ¼ 5051:48 N=mm2; Hnl ¼ 12738581 N=mm2; v ¼ 4:47:
ð2Þ

For a common rubber material, the parameter a would take on values around 2. In the present case,

however, the characteristic S-shape of the force–strain curve appears in the small strain range. For this

reason, the value of a is here much higher.

2.2. Composite

Experimental data for composites are frequently found in the form of internal reports of companies but

are poorly documented in the available literature. In order to overcome this problem, we set up a ‘‘com-

puter testing device’’ to obtain appropriate stress–strain data. The material parameters of the orthotropic

continuum mechanical model will then be fitted to these ‘‘experimental’’ results (Section 3).
In Fig. 2, the computer model for the fibre-reinforced membrane is shown. It consists of 3D non-linear

truss elements modeling the fibres and special low-order brick elements describing the rubber coating.

To get a representative response, 10 (to be precise nine in the interior and two cut in half at the

boundary) fibres are placed in each direction. With this two-phase approach, one is able to model the two

constituents separately. For the rubber, the standard Neo–Hookean approach is used. The material be-

haviour of the polyester fibres is described by means of the model derived in Section 2.1.

Since the fibres are not fully extended in their initial configuration (solid line in Fig. 3), one can pull them

in a stress-free state up to the point, where they are stretched straight. The strain at this time is easily
calculated from comparing the initial length of the fibres (L ¼ 10:44 mm) with the length of the test sample

(10 mm). So, the stresses measured up to a strain of about DL=L ¼ 0:44=10 ¼ 4:4% are due to the influence

of the rubber matrix alone and therefore very small (see the rubber elastic range in Fig. 5). The complete

stress–strain plot is given in Fig. 4. Beyond this limit, the stress in the fibres increases rapidly and the stress–

strain relationship of the membrane is dominated by the behaviour of the fibres (anisotropic elastic range).

Fig. 2. Computer model.
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The yield point is indicated by the kink in Fig. 5. The threads are permanently lengthened by the evolution
of the plastic strain. Thus, on the unloading path, they return to the stress-free state already at a strain of

about 10% (warp thread) or 13% (weft thread), respectively. From this point on, the load is carried again

only by the rubber coating. So, although there is a permanent deformation in the fibres, the deformation of

the ‘‘computer’’ membrane is completely reversible. In the direction of compression, the situation is in

general similar to the small strain case.

3. Continuum model

3.1. Strain energy function

We describe the deformation of a continuous body by means of the right Cauchy–Green tensor

C ¼ FT � F; ð3Þ

Fig. 4. Computer experiments.

Fig. 3. Fibre behaviour under tension and compression.
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where F denotes the deformation gradient. We assume further the existence of a scalar potential

W ¼ W ðC;FpÞ þ f ðeÞ (Helmholtz free energy function per reference volume), where Fp represents the plastic

part of the deformation gradient. The vector e contains certain internal variables which are specified later in
the context of the model. The part W ðC;FpÞ is usually called strain energy function. If Fp is considered as

elastic isomorphism (Wang and Bloom, 1974; Bertram, 1992, 1998; Svendsen, 1998), W can be represented

as a function of the ‘‘elastic’’ right Cauchy–Green tensor Ce ¼ F�T
p � C � F�1

p ¼ FT
e � Fe, the elastic part of the

Fig. 5. Detail of Fig. 4.
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deformation gradient defined by Fe ¼ F � F�1
p . To model orthotropic material behaviour, the strain energy

function is represented as an isotropic function of Ce and the structural tensors

fMM1 ¼ eNN1 � eNN1; fMM2 ¼ eNN2 � eNN2: ð4Þ

Thus, it can be written in the form

W ¼ Wisotr F�T
p � C � F�1

p ;fMM1;fMM2

� �
; ð5Þ

where the index ‘‘isotr’’ indicates here that W is an isotropic function of the given quantities. See for a more

detailed discussion the theoretical works of Boehler (1977, 1979), Liu (1982), Zhang and Rychlewski (1990)

and Svendsen (1994, 2001). It is important to note that Ce, fMM1, and fMM2 are tensors in the intermediate

configuration. The vectors eNN i (i ¼ 1; 2) are given via the equation (i ¼ 1; 2)

eNNi ¼ Fp �Ni
1

jFp �Nij
) fMMi ¼ Fp �Mi � FT

p

1

Cp :Mi
with Mi ¼ Ni �Ni; ð6Þ

where the vectors Ni are oriented parallel to the fibres in the reference configuration (see Fig. 6).

Analogously, we define the structural tensors mi with respect to the current configuration by means of

mi ¼ ni � ni ¼ Fe �fMMi � FT
e

1

Ce : fMMi

with ni ¼ Fe � eNNi
1

jFe � eNNij
: ð7Þ

Note that in general

eNN1 � eNN2 6¼ 0; n1 � n2 6¼ 0 ð8Þ

holds, i.e. the material is only initially orthotropic (N1 �N2 ¼ 0). The fibres do not remain orthogonal to

each other.

Fig. 6. Roven–woven structure with vectors Ni (i ¼ 1; 2).
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The strain energy function WisotrðCe;fMM1;fMM2Þ can be formulated in terms of the three invariants of Ce,2

I1 :¼ trCe; I2 :¼ 1
2
I2
1

�
� trðC2

eÞ
�
; I3 :¼ det Ce ð9Þ

and the first invariants of Ce �fMM1, C
2
e �fMM1, Ce �fMM2, C

2
e �fMM2, fMM1 �fMM2 and Ce �fMM1 �fMM2, respectively:

I4 :¼ trðCe �fMM1Þ ¼ Ce : fMM1; I5 :¼ trðC2
e �fMM1Þ ¼ C2

e :
fMM1; I6 :¼ trðCe �fMM2Þ ¼ Ce : fMM2;

I7 :¼ trðC2
e �fMM2Þ ¼ C2

e :
fMM2; I8 :¼ trðfMM1 �fMM2Þ; I9 :¼ trðCe �fMM1 �fMM2Þ: ð10Þ

For simplicity, the dependence on I8 and I9 will be neglected. A possible form for the strain energy function

is then the following:

W ¼ WNHðI1; I3Þ þ WþðI1; I2Þ þ WaniðI4; I5; I6; I7Þ ð11Þ

WNH ¼ l
2
ðI1 � 3Þ � l ln

ffiffiffiffi
I3

p
þ K

4
ðI3 � 1 � 2 ln

ffiffiffiffi
I3

p
Þ; ð12Þ

Wþ ¼ K iso
1 ðI1 � 3Þa1 þ K iso

2 ðI2 � 3Þa2 ;

Wani ¼ Kani 1
1 ðI4 � 1Þb1 þ Kani 1

2 ðI5 � 1Þb2 þ Kani 2
1 ðI6 � 1Þc1 þ Kani 2

2 ðI7 � 1Þc2

þ Kkop 1ðI1 � 3Þd1ðI4 � 1Þd1 þ Kkop 2ðI1 � 3Þd2ðI6 � 1Þd2 þ Kkop 12ðI4 � 1ÞfðI6 � 1Þf: ð13Þ

The latter form has already been chosen by Reese et al. (2001), where only hyperelastic material

behaviour was considered. In contrast to this earlier work, here, the invariants Ij (j ¼ 1; . . . ; 7) are com-

puted in terms of Ce and fMMi (i ¼ 1; 2). In hyperelasticity, Ce reduces to C and fMMi to Mi. The Neo–Hooke

part WNH models the deformation behaviour of the rubber coating. In the rubber elastic range, this rep-

resents the dominating part in the strain energy function. Consider now a deformation with ðCeÞ11 > 1,

ðCeÞ22 < 1, ðCeÞ33 ¼ ðCeÞ�1

11 ðCeÞ�1

22 and ðCeÞij ¼ 0, if i 6¼ j. The vectors Ni (i ¼ 1; 2) are chosen to be
NT

1 ¼ f1; 0; 0g and NT
2 ¼ f0; 1; 0g. It is obvious that in such a case, only the fibres in warp direction (index 1)

contribute to the stress, since the fibres in weft direction (index 2) are not stretched straight. Then, we

observe transversely isotropic material behaviour which can be described with only one structural tensorfMM1 ¼ fMM. The expression I4 � 1 is positive, whereas I6 � 1 is negative. The opposite case is obtained

analogously. Compression in warp and weft direction leads to purely isotropic behaviour. These require-

ments have to be incorporated into the model. For this purpose, the following case differentiation is

suitable.

If one of the expressions in the brackets characterized by the structure inv � c (invariant minus constant)
becomes negative (i.e. the fibres in warp or/and weft direction are not stretched straight), the material

parameter K ���
��� associated with this term is set equal to zero. In this way, we account for the fact that the

fibres do not contribute to the stress in the composite in their relaxed state.

In order to guarantee a smooth transition for inv ¼ c, the exponents ai, bi, ci, di and f (i ¼ 1; 2) are not

allowed to be equal to 1 or 2. In order to understand the reason for this restriction, we investigate the

expression f ðI4Þ ¼ ðI4 � 1Þb1 in more detail. Taking the first and the second derivative with respect to C

leads to

of ðI4Þ
oC

¼ b1ðI4 � 1Þb1�1 M1

Cp :M1

ð14Þ
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and

o2f ðI4Þ
oC2

¼ ðb1 � 1Þb1ðI4 � 1Þb1�2 M1

Cp :M1

� M1

Cp :M1

: ð15Þ

The term (14) enters the second Piola–Kirchhoff stress tensor S, whereas (15) is part of the material

tensor L ¼ 4o2W =oC2. The tensor M1=ðCp :M1Þ can be considered to be constant in the following dis-

cussion and is therefore (for simplicity) denoted by Y. We then obtain

b1 ¼ 1 :
of ðI4Þ
oC

¼ Y;
o2f ðI4Þ
oC2

¼ 0;

b1 ¼ 2 :
of ðI4Þ
oC

¼ 2ðI4 � 1ÞY; o2f ðI4Þ
oC2

¼ 2Y� Y:

ð16Þ

Thus, if the stiffness Kani 1
1 is switched off at I4 ¼ 1, either the stress S (b1 ¼ 1) or the material tensor L

(b1 ¼ 2) is discontinuous. A smooth transition between different cases (e.g. orthotropy/transversal isotropy)
cannot be obtained, if b1 ¼ 1 or b2 ¼ 1. Similar considerations can be made for the other terms of the strain

energy function.

3.2. Dissipation inequality

Using the Helmholtz free energy function W ¼ WisotrðF�T
p � C � F�1

p ;fMM1;fMM2Þ þ f ðeÞ in the Clausius–

Duhem form of the second law of thermodynamics leads to the so-called dissipation inequality

� _WW þ S :
1

2
_CC ¼ S

	
� 2

oW
oC



:

1

2
_CCþ R : lp þ q � _ee P 0; ð17Þ

where lp, the stress tensor R and q are defined by

lp :¼ _FFp � F�1
p ; R ¼ � oW

oFp

� FT
p and q ¼ � of ðeÞ

oe
; ð18Þ

respectively. The vector e contains internal variables describing the hardening of the material. The in-

equality (17) is sufficiently fulfilled by S ¼ 2oW =oC, R : lp P 0 and q � e P 0. Evidently, there are many

possibilities to choose an evolution equation for lp in such a way that the latter requirement is satisfied. The

main difficulty, however, is to match the ‘‘experimental’’ results.

3.3. Yield functions and flow rules

Using the Gateaux derivative

DW ðCe;fMM1;fMM2Þ : DC ¼ oW
oCe

: ðF�T
p � DC � F�1

p Þ; ð19Þ

it is easily shown that

S ¼ 2F�1
p � oW

oCe

� F�T
p ð20Þ

holds. From that, we compute the Kirchhoff stress tensor s ¼ F � S � FT with (see Appendix A)
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s ¼ 2Fe �
oW
oCe

� FT
e

¼ 2
oW
oI1

be þ 2
oW
oI2

ðI1be � b2
eÞ þ 2

oW
oI3

I31 \iso"

þ 2
oW
oI4

m1 þ 2
oW
oI5

ðbe �m1 þm1 � beÞ \ani 1"

þ 2
oW
oI6

m2 þ 2
oW
oI7

ðbe �m2 þm2 � beÞ \ani 2";

ð21Þ

where the tensors mi (i ¼ 1; 2) are given with mi ¼ Fe �fMMi � FT
e ¼ I2iþ2mi. The first three terms (second line of

(21)) represent the isotropic part of s from now on denoted with siso. It is derived from the strain energy
parts WNH and Wþ alone. Accordingly, we define sani 1 and sani 2 coming from Wani.

Exploiting the fact that W is an isotropic function of Ce, fMM1 and fMM2, it can be shown that the stress

tensor R is symmetric (see Appendix B):

R ¼ 2
oW
oI1

Ce þ 2
oW
oI2

ðI1Ce � C2
eÞ þ 2

oW
oI3

I31 \iso"

þ 2
oW
oI4

I4fMM1 þ 2
oW
oI5

ðI5fMM1 þ Ce �fMM1 � CeÞ \ani 1"

þ 2
oW
oI6

I6fMM2 þ 2
oW
oI7

ðI7fMM2 þ Ce �fMM2 � CeÞ \ani 2":

ð22Þ

The scalar product R : lp therefore reduces to R : dp, where dp ¼ sym lp denotes the symmetric part of lp. The

scalar product R : dp can be rewritten with

R : dp ¼ F�1
p � R � F�T

p

� �
: 1

2
_CCp; ð23Þ

where the tensor

F�1
p � R � F�T

p ¼ 2C�1
p � C � SisoðC;CpÞ þ 2W;4

I4
Cp :M1

M1 þ 2W;5

1

Cp :M1

I5M1

�
þ C�1

p � C �M1 � C � C�1
p

�
þ 2W;6

I6
Cp :M2

M2 þ 2W;6

1

Cp :M2

I7M2

�
þ C�1

p � C �M2 � C � C�1
p

�
; ð24Þ

obviously represents a function of C and Cp (the structural tensors Mi (i ¼ 1; 2) in the reference configu-

ration can be considered to be given). Therefore, in contrast to many other approaches in anisotropic

plasticity, the model is closed if we consider the symmetric tensor Cp as internal variable. The rotational

part in Fp ¼ Rp �
ffiffiffiffi
C

p
p, i.e. Rp, remains undetermined. The stress tensor Siso is computed via Siso ¼

2oðWNH þ WþÞ=oC ¼ F�1sisoF
�T and represents the isotropic part of S.

At this point, the computer model proves to be very useful, since it enhances our understanding of the

material behaviour majorly. The comparison between the stress–strain curves computed for uniaxial and

biaxial tension makes evident, that the fibres in warp and weft direction hardly interact with each other (see

Fig. 7). This is understandable from the fact that the warp threads are not directly linked to the weft threads

(see Fig. 2). The interaction is only due to the rubber matrix, the stiffness of which is very low in comparison

with the one of the fibres. So, we are able to treat the pneumatic membrane as two 1D systems which are in

its initial state oriented orthogonal to each other. Keeping this in mind, it can be easily accepted that

plastification begins, when the Cauchy stress in the fibre direction exceeds a certain value. If one takes
additionally into account, that the material is nearly incompressible, we may use instead of the Cauchy

stress also the Kirchhoff stress and express the projection of this stress on ni in the form s : mi (i ¼ 1; 2). In
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order to fulfill the dissipation inequality, it is important to clarify how the latter quantity is related to the

stress tensor R. After some steps, one obtains for i ¼ j (i; j ¼ 1; 2) the result

ðsiso þ sani iÞ : mi ¼ ðRiso þ Rani jÞ : symðfMMj � CeÞ
1

I2jþ2

: ð25Þ

Note that Einstein�s summation convention does not hold. However, it has to be emphasized that (25)

does in general not hold for i 6¼ j. For a detailed derivation of the latter statement see Appendix C. Ex-

ceptions are the cases:

(a) The fibres remain orthogonal to each other (eNN1 � eNN2 ¼ n1 � n2 ¼ 0).

(b) The elastic part of the deformation is small (be � 1).

Looking at Fig. 1 it is recognized that assumption (b) is justified. Plastification begins at about 1% strain.
In the computer model (see Fig. 5) the plastification in the fibres does not start before �5.5% strain which is

due to the fact that the fibres are not stretched straight from the beginning. However, this difference with

respect to the 1D consideration is due to the geometry of the computer model and should therefore not be

included in the material modelling at this stage of the derivation. Thus, the choice (i ¼ 1; 2)

Fig. 7. Experimental results and fit for uniaxial and biaxial tension.
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Ui ¼ R : symðfMMi � CeÞ
1

I2iþ2

���� ����� rYi
�

þ Hlin ini þ Hnl in
vi
i

�
ð26Þ

can be considered to be reasonable from the physical point of view. The coefficients qi of q ¼ qiei (ei
cartesian basis) are here given with qi ¼ Hlin ini þ Hnl in

vi
i (i ¼ 1; 2). The evolution equations are chosen as

dp ¼
X2

i¼1

_cci
oUi

oR
¼
X2

i¼1

_cci sign R : symðfMMi � CeÞ
1

I2iþ2

	 

symðfMMi � CeÞ

1

I2iþ2

; _nni ¼ _cci; ð27Þ

where the vector e introduced in (17) is specified with eT ¼ fn1; n2g. Above that, the Kuhn–Tucker con-

ditions _cci P 0, Ui6 0, _cciUi ¼ 0 (i ¼ 1; 2) have to be fulfilled. Exploiting the residual dissipation inequality

(17) yieldsX2

i¼1

_cci sign R : symðfMMi � CeÞ
1

I2iþ2

	 

 �
R : symðfMMi � CeÞ

1

I2iþ2


 �
þ _cci Hlin ini

�
þ Hnl in

vi
i

�
P 0: ð28Þ

Clearly, the inequality is always fulfilled, since the product of the sign-function with the scalar product as

well as the plastic multiplier and the accumulated plastic strain are positive.

Although the expression s : mi cannot be completely transferred into an expression including R, it would
be certainly still preferable from the physical point of view to work with the yield criteria (i ¼ 1; 2)

Ui ¼ js : mij � rYi
�

þ Hlin ini þ Hnl in
vi
i

�
ð29Þ

and the flow rule

� 1

2
Lvbe ¼ Fe � dp � FT

e ¼
X2

i¼1

_cci signðs : miÞ symðmi � beÞ ¼
X2

i¼1

_cci sym
oUi

os
� be

	 

: ð30Þ

It is obvious that in the case of Ui being an isotropic function of s and s being coaxial with be, we obtain the

classical evolution equation for finite isotropic elastoplasticity written in terms of the Oldroyd derivative of

be, the tensor Lvbe (see Simo and Miehe, 1992).

It remains to show that also (30) fulfills the dissipation inequality. Inserting

dp ¼ � 1

2
F�1

e �Lvbe � F�T
e ¼

X2

i¼1

_cci signðs : miÞ symðfMMi � CeÞ
1

I4
ð31Þ

into (17) leads to the requirementX2

i¼1

_cci signðs : miÞ R : symðfMMi � CeÞ
1

I2iþ2


 �
þ _cci Hlin ini

�
þ Hnl in

vi
i

�
P 0: ð32Þ

Thus, if the statement

signðs : miÞ ¼ sign R : symðfMMi � CeÞ
1

I2iþ2

	 

ð33Þ

holds, also (30) fulfills the dissipation inequality. The correctness of the statement (33) is proven in Ap-
pendix D.

If the fibre orientations remain orthogonal to each other during the deformation (n1 � n2 ¼ 0, eNN1 � eNN2 ¼
0), both, (27)1 and (30), reduce to

ðkpÞ�i ¼ _cci signsiðkpÞi: ð34Þ

This relation is equal to the evolution equation for the plastic stretch in the fibre model (see Table 1).
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3.4. Parameter identification

The parameters of the material model presented in the Sections 3.1–3.3 are subsequently fitted to the

computer experiments already discussed in Section 2 (see Fig. 7). The fit is at first restricted to uniaxial and
biaxial tension. Obviously, the correlation between the ‘‘experimental’’ results and the results obtained with

the continuum mechanical model is very good. At this point, however, one has to discuss the special geo-

metry of the computer model. Due to the thickness of the computer test piece (t ¼ 0:3 mm ¼ kL=n with

n ¼ 10 and k ¼ 0:3, n number of fibres in each direction) the loading of the fibres does not begin before the

test piece is deformed in such a way that the fibres are stretched straight. Since the original length of the

fibres is computed with Lfib ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ k2

p
, this deformation is described by the stretch kH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ k2

p
in each

direction. But it has to be taken into consideration further that due to plastification, the length of the fibres

as well as the dimensions of the computer model are increased in each load cycle. The multiplicative de-
composition of the stretch in the fibre therefore reads

kfib ¼ Lnew

Lfib þ DLp|fflfflfflfflfflffl{zfflfflfflfflfflffl}
kfib

e

Lfib þ DLp

Lfib|fflfflfflfflfflffl{zfflfflfflfflfflffl}
kfib

p

; ð35Þ

where DLp is the lengthening of the whole model (including the fibres) due to plastification and Lnew the

current length of the whole model. The stretch of the computer model in one direction is described with

(index i omitted)

k ¼ Lnew

Lþ DLp|fflfflfflffl{zfflfflfflffl}
ke

Lþ DLp

L|fflfflfflffl{zfflfflfflffl}
kp

: ð36Þ

kfib
e ¼ 1 indicates the onset of the fibre loading. The associated elastic stretch kH

e of the computer model is

computed with

Lnew ¼ Lfib þ DLp ) kH

e ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ k2

p
þ DLp

Lþ DLp

: ð37Þ

In the present computations, the plastic stretch hardly exceeds the value 1.1, i.e. the maximum of DLp lies at

about 0.1 L. kH

e can therefore be approximated by the constant value

kH

e �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ k2

p
) ðCeÞH11 ¼ ðCeÞ22 ¼ ðkH

e Þ
2 � 1 þ k2: ð38Þ

Certainly, the value kH

e is meaningless, if a rotation of the fibres takes place. For this reason, a relation

between kfib
e and the invariants Im (m ¼ 4; . . . ; 7) needs to be established:

• uniaxial and biaxial tension

½ðCeÞij� ¼
ðCeÞ11 0 0

0 ðCeÞ22 0

0 0 � ðCeÞ�1

11 ðCeÞ�1

22

24 35; ð39Þ

) I4 ¼ ðCeÞ11; I5 ¼ ðCeÞ2

11; I6 ¼ ðCeÞ22; I7 ¼ ðCeÞ2

22: ð40Þ
From that, we obtain

IH4 ¼ IH6 ¼ 1 þ k2; IH5 ¼ IH7 ¼ ð1 þ k2Þ2
: ð41Þ
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• shearing

The matrix of the deformation gradient F takes the form

½Fij� ¼
1 0 0

a 1 0

0 0 1

24 35; ð42Þ

where the parameter a represents the derivative of the displacement in vertical direction (u2) with respect

to X1. The matrix of the right Cauchy–Green tensor is then computed with

½Cij� ¼
1 þ a2 a 0

a 1 0

0 0 1

24 35: ð43Þ

One obtains I4 ¼ 1 þ a2 and I6 ¼ 1. This result is physically reasonable, since the actual length of the

fibre (if it is stretched straight) is computed with

Lfib
new ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a2

p
: ð44Þ

If there is no plastic deformation, this yields for the stretch in the fibre the relation

kfib ¼ Lfib
new

Lfib
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ k2

p : ð45Þ

Thus, the loading of the fibre begins at a ¼ k ¼ 0:3 mm (30% shear strain). As it is the case for uniaxial

or biaxial tension, the lengthening of the fibres due to plastic deformation would change this result slightly.
The influence is again neglected, and we obtain independent of the fact, whether a pure stretching of the test

piece or a shear deformation is considered, the result

IH4 ¼ IH6 ¼ 1 þ k2: ð46Þ

A problem arises due to the influence of the invariants I5 and I7. Considering again the special case of

Ce ¼ C, the invariant I7 takes on the same value as I4 which means that terms associated with I7 would be

switched on although the weft thread remains more or less undeformed. This difficulty can be circumvented

by omitting the terms depending on I5 and I7 in Wani. As fringe benefit, one obtains a major simplification of
the model.

It turns out further that the coupling terms associated with the constants Kkop i and Kkop 12 are not needed

to fit the computer results.

The strain energy term Wani takes then the simple form (c2iþ2 � IH2iþ2)

Wani ¼ Kani 1
1 ðI4 � c4Þb1 þ Kani 2

1 ðI6 � c6Þc1 ; ð47Þ

where the parameters Kani i
1 (i ¼ 1; 2) are only unequal to zero, if I2iþ2 P c2iþ2. The material parameters used

to fit the experimental results in Fig. 7 are given below.

Kani 1
1 ¼ 1000 N=mm2; Kani 2

1 ¼ 1000 N=mm2; rY 1 ¼ 50 N=mm2; rY 2 ¼ 25 N=mm2;

Hlin 1 ¼ 2480 N=mm2; Hlin 2 ¼ 2150 N=mm2; Hnl 1 ¼ 65 � 106 N=mm2; Hnl 2 ¼ 11 � 106 N=mm2;

b1 ¼ 2:3; c1 ¼ 2:3; v1 ¼ 4:69; v2 ¼ 4:69; Kani i
2 ¼ K iso

i ¼ Kkop i ¼ Kkop 12 ¼ 0; i ¼ 1; 2:

Note that the small strain stiffness is practically only determined by the Neo–Hooke part of the model,
because the other parts of the stress are not active in this strain range. The Neo–Hooke parameters can

therefore be chosen equal to the values in the computer model (l ¼ 1:4 N/mm2, K ¼ 300 N/mm2). It should
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be emphasized that the model is fit to the three experiments simultaneously. In this way, we obtain one set of
parameters which shows a very good agreement for all three tests. An exception are the geometrical pa-

rameters c4 and c6 which take on different values in uniaxial and biaxial tension (see Fig. 7). The lower value

of c4 in biaxial tension is due to the effect of the weft fibres which are already stretched straight, when the

loading in the warp fibres begins. It would also be possible to look at c4 and c6 as deformation-dependent

functions, e.g. c4 ¼ c4ðI4; I6Þ, c6 ¼ c6ðI4; I6Þ. Such an idea should be investigated in further research.

At last, it is certainly important to test the model for the case that the fibres rotate. For this purpose, we

look at the shearing of the computer test piece (see Fig. 8). The boundary conditions in the third coordinate

direction are chosen such that a plane stress state is obtained.
In Fig. 9, the ‘‘experimental’’ results are compared with the results computed with the continuum me-

chanical model.

As pointed out in the above, only the warp thread is stretched such that only the terms including I4 are

effective. The elastic range and the onset of plastification are very well described. Note that the material

parameters have not been fitted again. In the hardening range, the shear force computed with the con-

tinuum mechanical model increases slightly too quickly. Although the discrepancy is still tolerable, it might

indicate that the use of only two scalar variables (n1 and n2) to describe the accumulated plastic strain could

be too restrictive. This question should be also discussed in further work.

Fig. 8. Shear test.

Fig. 9. Experimental results and fit for shear test.
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4. Numerical aspects

4.1. Integration of the evolution equations

We introduce the short hand notation

ai :¼ � _cci signðs : miÞ ð48Þ
and reformulate (30) as

Lvbe ¼ F � d

dt
C�1

p

	 

� FT ¼

X2

i¼1

aiðmi � be þ be �miÞ: ð49Þ

Pulling back (49) to the reference configuration yields

d

dt
C�1

p ¼
X2

i¼1

ai Mi � C � C�1
p

�
þ C�1

p � C �Mi

� 1

C :Mi
: ð50Þ

The latter equation is now integrated by means of the backward Euler scheme leading to

1

2
1�

X2

i¼1

Mi � C
aiDt
C :Mi

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�AA

� C�1
p þ C�1

p � 1

2
1�

X2

i¼1

C �Mi
aiDt
C :Mi

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�AAT

¼ C�1
pn : ð51Þ

Transferring this relation again to the current configuration gives

A � be þ be � AT ¼ btrial
e ; ð52Þ

where the abbreviations

A ¼ F � �AA � F�1 ¼ 1

2
1�

X2

i¼1

aiDtmi and btrial
e ¼ F � C�1

pn � FT ð53Þ

have been utilized. This integration rule is very advantageous from the computational point of view, since it

represents a linear relation between be and btrial
e (note that btrial

e can be considered to be given at the Gauss

point level). In index notation, (52) reads

AikðbeÞkj þ ðbeÞikAjk ¼ ðbtrial
e Þij ) ðAikdjl þ AjkdilÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Dijkl

ðbeÞkl ¼ ðbtrial
e Þij: ð54Þ

Using the symmetry of be, the matrix Dijkl can be further symmetrized to read

Dijkl ¼ 1
2
ðAikdjl þ Ajkdil þ Aildjk þ AjldikÞ: ð55Þ

In Voigt notation, the relation D : be ¼ btrial
e is written as

be ¼ D�1btrial
e ; ð56Þ

with matrices (or vectors) denoted by slanted boldface letters. Since in the local integration procedure to be
carried out at the Gauss point level, the deformation F and consequently also the structural tensors mi are

held constant, D contains the slip rates _cci (i ¼ 1; 2) as only unknowns.
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In summary, at the Gauss point level, we have to solve the following equations (Dci :¼ _cciDt):

rðbe;Dc1;Dc2Þ ¼ be �D�1btrial
e ¼ 0;

siðni;DciÞ ¼ ni � nin � Dci ¼ 0;

UiðŝsðbeÞ; niÞ ¼ 0:

ð57Þ

Note that the Voigt notation of s is indicated by ŝs. The use of (57)1 and (57)2 in (57)3 leads to

UiðDc1;Dc2Þ ¼ mT
i ŝs DðDc1;Dc2Þ

�1
btrial

e

� ���� ���� rYi þ Hlin iðnin þ DciÞ þ Hnl iðnin þ DciÞ
við Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fiðDciÞ

¼ 0: ð58Þ

Thus, the local 10 � 10 equation system reduces to the iterative solution of two non-linear scalar

equations. The remaining unknowns are determined by directly evaluating the functional relations.

4.2. Local Newton iteration

In order to apply Newton�s method to solve (58), the consistent linearization of (58) with respect to Dc1

and Dc2 is necessary. In the present case, it is, however, numerically inefficient to compute the tangent

analytically, since it involves many multiplications of 6 � 6 matrices. Instead, we use the classical numerical

tangent which represents a scalar or, in the most complicated case, a 2 � 2 matrix.

Additionally important is the fact that one has to deal here with a simple kind of multisurface plasticity,

where a differentiation between the following four cases has to be carried out:

(1) U1 < 0, U2 < 0: no further plastification;

(2) U1 ¼ 0, U2 < 0: further plastification in the warp fibre;

(3) U1 < 0, U2 ¼ 0: further plastification in the weft fibre;

(4) U1 ¼ 0, U2 ¼ 0: further plastification in both fibres.

Depending on the sign of the start values Utrial
i (i ¼ 1; 2) at the beginning of the iteration, one proceeds

into the Newton loops for the Cases (2)–(4). Case (1) means that no further plastification occurs. The loops
for Cases (2) and (3) involve the iterative solution of either U1 ¼ 0 (Case (2), active set: 1) or U2 ¼ 0 (Case

(3), active set: 2). In Case (4), both equations, U1 ¼ 0 and U2 ¼ 0, have to be solved simultaneously. The

active set includes the systems 1 and 2. During the iteration, negative values of Dc1 or Dc2 might occur. In

order to avoid this problem, the side condition Dci ¼ maxð0;DciÞ is introduced. If no solution of (58) can be

found, the active set has to be modified according to the value of Dc1 and Dc2 at the end of the failed

iteration. See for more information about the active set strategy in the large strain domain the references

Cuitino and Ortiz (1992) and Miehe (1996).

4.3. Solution of the weak form

The weak form of the balance of linear momentum reads

gðu; duÞ ¼
Z
B0

P : dFdV � ga ¼ 0; ð59Þ

where P ¼ F � SðC;CpðCÞÞ denotes the first Piola–Kirchhoff stress tensor, dF ¼ Graddu the variation of the

deformation gradient and dV a volume element in the undeformed configuration B0. Applying the nu-
merical integration procedure introduced in Section 4.1, the second Piola–Kirchhoff stress tensor S is

seen at the global finite element level as a function of the right Cauchy–Green tensor C only. Further, ga

S. Reese / International Journal of Solids and Structures 40 (2003) 951–980 967



represents a short hand notation for the virtual work of the external loading. The consistent linearization of

(59) yields

gðu; duÞ � gð�uu; duÞ þ Dgð�uu; duÞ ¼ 0 ð60Þ

with

Dgðu; duÞ ¼
Z
B0

oP

oF|{z}
A

: DF

0BB@
1CCA : dFdV þ Dga: ð61Þ

In the finite element computations, the matrix form A of the tangent tensor A is replaced by the nu-

merical approximation

Aij ¼
PiðF1; . . . ; Fj þ e; . . . ; F9Þ � PiðF1; . . . ; Fj; . . . ; F9Þ

e
: ð62Þ

Note that for this purpose, P and F have been formulated in vector form. The parameter e is chosen equal

to 10�8.

5. Examples

In this section, two examples are discussed for the purposes (1) to study the behaviour of the composite

material in more general deformation and stress states and (2) to validate the finite element implementation.

Due to the rather high numerical effort at the element level, typical for sophisticated material models, it is

suitable to work with one Gauss point element formulations. For various kinds of hourglass stabilizations

refer to Reese et al. (1999, 2000).

5.1. Inflation of a rectangular membrane

Pneumatic structures obtain their stability by inflation, i.e. they are exposed to a deformation-dependent
pressure loading p (see e.g. Schweizerhof and Ramm, 1984). Frequently, pieces with different fibre orien-

tations are sewed together.

In the left half of the system (Fig. 10), the fibers are lying in horizontal and vertical directions (0�/90�,
solid line: warp thread, dashed line: weft thread). In the right half, the orientation angles )45�/þ45� are

chosen. At the boundaries defined by X1 ¼ 0 mm, X1 ¼ 10 mm, X2 ¼ 0 mm and X2 ¼ 16 mm, all degrees-of-

freedom are fixed.

In Fig. 11, the evolution of the Kirchhoff stress in the direction of X1 is shown. It is clearly visible that a

stress concentration arises in the neighbourhood of the seam. In general, s11 reaches much higher values
than s22 (Fig. 12).

Looking in addition at the deformed system (Fig. 13), it is evident that the left side of the membrane

(fibre orientations 0�/90�) shows noticeably stiffer behaviour than the right hand side (fibre orientations 45�/
)45�).

It is further interesting to observe the evolution of the plastic deformation. The plots in Fig. 14 (Fig. 15)

show the regions, where U1 ¼ 0, U2 < 0 (U2 ¼ 0, U1 < 0) hold. The plastification starts in the area of the

stress concentration which is a physically reasonable result.

At p ¼ 1:21 N/mm2, there is a very small region (not shown in the plots), where both slip systems are
active (U1 ¼ U2 ¼ 0). This region increases, however, quickly, until in almost the entire system, plastifi-

cation occurs in both directions (Fig. 16).
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5.2. Pneumatic column

In the second example, the deformation behaviour of a classical pneumatic construction element is in-

vestigated in detail. The geometry of the discretized system is shown in Fig. 17.

Only one half of the column is discretized. The pressure loading p acting on the inner side of the column

is visible in the middle part of Fig. 17. In addition, a vertical force F pointing in the negative z-direction is

Fig. 10. Rectangular membrane, geometry and boundary conditions.

Fig. 11. Kirchhoff stress s11 for different load states (p ¼ 0:21, 0.61, 3.41, 8.81 N/mm2).

S. Reese / International Journal of Solids and Structures 40 (2003) 951–980 969



Fig. 12. Kirchhoff stress s22 for p ¼ 8:81 N/mm2.

Fig. 13. Deformed system for p ¼ 8:81 N/mm2, different perspective.

Fig. 14. Accumulated plastic strain n1 for different load states (U1 ¼ 0, U2 < 0).

Fig. 15. Accumulated plastic strain n2 for p ¼ 1:21 N/mm2 (U2 ¼ 0, U1 < 0).
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applied at the top. At the bottom of the structure (z ¼ 0), all three degrees-of-freedom (the displacements in

the three coordinate directions) are fixed. The system is covered with a top made of usual rubber material

(l ¼ 1:4 N/mm2, K ¼ 1000 N/mm2). The pressure loading is also applied at the inside of this cover con-

tributing to the vertical loading of the system. The third degrees-of-freedom (displacements in z-direction,
i.e. w) at the top of the structure (z ¼ 4000 and 4003 mm) are linked together, the cover therefore maintains

always its horizontal orientation. It is further assumed that the nodes lying in the plane y ¼ 0 (see right part

of Fig. 17) do not move in y-direction. The displacement in x-direction is hindered at x ¼ 0, z ¼ 4000 mm

and x ¼ 0, z ¼ 4003 mm.

Fig. 16. Average accumulated plastic strain 1
2
ðn1 þ n2Þ for different load states (U1 ¼ 0, U2 ¼ 0).

Fig. 17. Pneumatic column, (a) geometry, (b) pressure loading, (c) cross-section.
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In the first computation, we study the deformation behaviour of the column for different fibre orien-

tations. The loading is applied in two-phases:

(1) inflation of the column: increase of the internal pressure p up to a certain value �pp,
(2) vertical loading of the column: the pressure is held constant (p ¼ �pp), increase of the vertical force F .

In Fig. 18, the deformed configurations of the column, including the contours for the displacement w, are

shown for different fibre orientations (load state: end of phase (1), here: �pp ¼ 0:6011 N/mm2). The maximum

and minimum values in mm are listed in Table 2 (columns a). Obviously, the angle of the contour lines is

almost identical with the orientation of the warp thread.

The contours of the Kirchhoff stress in z-direction s33 are plotted in Fig. 19, for the max/min values refer

to Table 2 (columns b). For the orientations 70�/)20�, 65�/)25� and 60�/)30�, the maximum values of s33

are found in the vicinity of the plane y ¼ 0. In contrast to the computations based on the angles 90�/0� and

45�/)45�, compressive stresses occur which cause wrinkling effects at the top and at the bottom of the

structure.

Fig. 18. Contour plots of w, fibre orientations: (a) 90�/0�, (b) 70�/)20�, (c) 65�/)25�, (d) 60�/)30�, (e) 45�/)45�.

Table 2

Maximum/minimum values of w (a) and s33 (b)

Orientation (a) (b)

maxw minw max s33 min s33

90�/0� 44.8 )1.23 56.2 0

70�/)20� 9.57 )172 66.5 )3.38

65�/)25� 0.90 )305 62.5 )2.66

60�/)30� 0 )478 55.5 )2.27

45�/)45� 0 )861 38.0 0
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It is further interesting to compare the process of plastification for different fibre orientations. In Fig. 20,

one sees the regions, where U1 < 0, U2 ¼ 0 hold. The domain, where both slip systems are active

(U1 ¼ U2 ¼ 0), is plotted in Fig. 21. In the dark region, the accumulated strain, (n2 or 1
2
ðn1 þ n2Þ, respec-

tively), is smaller than 10�5. The maximum values are given in Table 3. Obviously, the smaller the angle of

the warp thread, the larger becomes the region with U1 ¼ U2 ¼ 0.

Fig. 19. Contour plots of the Kirchhoff stress s33, fibre orientations: (a) 90�/0�, (b) 70�/)20�, (c) 65�/)25�, (d) 60�/)30�, (e) 45�/)45�.

Fig. 20. Accumulated plastic strain n2 (U1 < 0, U2 ¼ 0), fibre orientations: (a) 90�/0�, (b) 70�/)20�, (c) 65�/)25�, (d) 60�/)30�,
(e) 45�/)45�.
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Finally, it remains to investigate how the system behaves in load phase (2). The force–displacement

curves for different fibre orientations are plotted in Fig. 22. The letter w refers to the displacement of the top

of the structure in the negative z-direction. It is counted from the end of phase (1) (w ¼ 0). For the angles

90�/0�, an almost linear relationship between F and w is obtained (solid curve). The kink indicates the load

state, when compressive stresses occur for the first time. At a slightly increased load, the system loses its
stability. Interestingly, other fibre orientations as 70�/)20� and 65�/)25� lead to stiffer behaviour of the

membrane for loads in the range of 0–2.5 kN. Beyond this limit, the influence of the compressive stresses in

the system becomes too severe causing instabilities due to wrinkling. If one chooses the fibre orientations

60�/)30� and 45�/)45�, the system is rather soft in load phase (1). At the beginning of load phase (2),

negative values of w occur for small values of F . Thus, the top of the structure moves upwards, although the

load F is directed in the opposite direction. This can be explained by the fact that the stress components sii
(i ¼ 1; 2; 3) decrease with increasing F , causing the system to relax.

One important point, however, should be mentioned at last. The pneumatic column can be seen as a
closed system, where the equation of state for an ideal gas pV ¼ nkH (V enclosed volume, n number of

molecules, k Boltzmann�s constant, H absolute temperature) has to be fulfilled. For isothermal processes, it

boils down to the statement pV ¼ constant. Increasing the load F results due to the unloading of the fibres

to a decrease of the volume. According to the gas equation, the pressure must increase leading eventually to

a further loading of the fibres. On the other hand, the volume might increase accompanied by a decrease of

Fig. 21. Accumulated plastic strain 1
2
ðn1 þ n2Þ (U1 ¼ 0, U2 ¼ 0), fibre orientations: (b) 70�/)20�, (c) 65�/)25�, (d) 60�/)30�, (e) 45�/)45�.

Table 3

Maximum values of n2 (a) and 1
2
ðn1 þ n2Þ (b)

Orientation (a) (b)

max n2 max 1
2
ðn1 þ n2Þ

90�/0� 2:84 � 10�2 U1 not active

70�/)20� 2:92 � 10�2 1:65 � 10�2

65�/)25� 2:93 � 10�2 1:68 � 10�2

60�/)30� 1:69 � 10�2 1:69 � 10�2

45�/)45� 1:15 � 10�2 1:71 � 10�2
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the pressure. From the engineering point of view, however, it can be assumed that the first situation is more
realistic. Then, negative stiffnesses of the column as shown in Fig. 22 could not occur. The gas equation can

be included int the finite element implementation by treating the pressure as additional degree-of-freedom

(see e.g. the recent work of Rumpel and Schweizerhof, in press). The application of such an algorithm in the

context of pneumatic membranes is currently under investigation.

6. Conclusions

The main goal of this paper has been to model the anisotropically elastoplastic material behaviour of

fibre-reinforced membranes. Due to the lack of enough experimental data, a computer model has been set

up. Simulating various biaxial and uniaxial experiments with such a ‘‘virtual’’ test piece, we are able to

generate sufficient test data. As an additional benefit, one gains a deeper understanding of what happens

inside the material.
It is crucial to consider plastic deformations in order to obtain a realistic description of the material

behaviour. Interestingly, one can show that based on the assumption that the structural vectors transform

like material line elements, the plastic deformation is represented by means of a symmetric tensor-valued

internal variable. Thus, the plastic spin remains undetermined. This is a surprising result in the context of

anisotropic material behaviour. The integration of the material equations is efficiently achieved via a

backward Euler scheme applied in the framework of a return-mapping algorithm. The finite element im-

plementation can therefore be carried out in a straightforward manner. The numerical investigation of an

inflated pneumatic column shows that the fibre orientation has an important influence on the resulting
force–displacement curves.
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Fig. 22. Force–displacement curves for load phase (2), different fibre orientations.
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Appendix A

In this appendix, the computation of the Kirchhoff stress tensor s is shown in detail.

• Derivative of W with respect to Ce

oW
oCe

¼ oW
oI1

oI1
oCe

þ oW
oI2

oI2
oCe

þ oW
oI3

oI3
oCe

þ oW
oI4

oI4
oCe

þ oW
oI5

oI5
oCe

þ oW
oI6

oI6
oCe

þ oW
oI7

oI7
oCe

; ðA:1Þ

oI1
oCe

¼ 1;
oI2
oCe

¼ I11� Ce;
oI3
oCe

¼ I3C
�1
e ; ðA:2Þ

oI2iþ2

oCe

¼ fMMi;
oI2iþ3

oCe

¼ Ce �fMMi þfMMi � Ce: ðA:3Þ

• Definition of mi

mi ¼ Fe �fMMi � FT
e ¼ F �Mi � FT

C :Mi

C :Mi

Cp :Mi
¼ miI2iþ2: ðA:4Þ

• Kirchhoff stress tensor

s ¼ 2Fe �
oW
oCe

� FT
e

¼ 2
oW
oI1

be þ 2
oW
oI2

ðI1be � b2
eÞ þ 2

oW
oI3

I31 ðA:5Þ

þ 2
oW
oI4

m1 þ 2
oW
oI5

ðbe �m1 þm1 � beÞ ðA:6Þ

þ 2
oW
oI6

m2 þ 2
oW
oI7

ðbe �m2 þm2 � beÞ: ðA:7Þ

Appendix B

In this appendix, the computation of the stress tensor R is discussed. In the course of this, the symmetry

of this tensor comes out as another important result.

• Derivation of the derivative oW =oFp

DW ðCe;fMM1;fMM2Þ : _FFp ¼ � oW
oCe

: Ce � lp
�

þ lTp � Ce

�
þ oW

ofMM1

: ðfMM1Þ� þ
oW

ofMM2

: ðfMM2Þ�; ðB:1Þ

ðfMMiÞ� ¼ _FFp �Mi � FT
p

�
þ Fp �Mi � _FFT

p

� 1

Cp :Mi
�

_CCp :Mi

Cp :Mi

fMMi: ðB:2Þ

• Intermediate result

_CCp :Mi

Cp :Mi
¼ _FFT

p � Fp

�
þ FT

p � _FFp

�
:Mi

1

Cp :Mi

¼ FT
p � F�T

p � _FFT
p � Fp

�
þ FT

p � _FFp � F�1
p � Fp

�
:Mi

1

Cp :Mi
¼ lTp

�
þ lp

�
: fMMi ¼ 2dp : fMMi: ðB:3Þ
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• Time derivative of fMMi

ðfMMiÞ� ¼ lp �fMMi þfMMi � lTp � 2ðdp : fMMiÞfMMi: ðB:4Þ

• Final result for

DW ðCe;fMM1;fMM2Þ : _FFp

¼ 2

	
� Ce �

oW
oCe

þ oW

ofMM1

�fMM1 þ
oW

ofMM2

�fMM2 �
oW

ofMM1

: ðfMM1 �fMM1Þ �
oW

ofMM2

: ðfMM2 �fMM2Þ



: lp: ðB:5Þ

• Stress tensor R

R ¼ 2Ce �
oW
oCe

� 2
oW

ofMM1

�fMM1 � 2
oW

ofMM2

�fMM2 þ 2
oW

ofMM1

: ðfMM1 �fMM1Þ þ 2
oW

ofMM2

: ðfMM2 �fMM2Þ: ðB:6Þ

• Summation of the first three terms (W;j ¼ oW =oIj)

Ce �
oW
oCe

¼ W;1Ce þ W;2ðI1Ce � C2
eÞ þ W;3I31þ W;4Ce �fMM1 þ W;5 C2

e �fMM1

�
þ Ce �fMM1 � Ce

�
þ W;6Ce �fMM2 þ W;7 C2

e �fMM2

�
þ Ce �fMM2 � Ce

�
; ðB:7Þ

� oW

ofMM1

�fMM1 ¼ �W;4Ce �fMM1 � W;5C
2
e �fMM1; ðB:8Þ

� oW

ofMM2

�fMM2 ¼ �W;6Ce �fMM2 � W;7C
2
e �fMM2: ðB:9Þ

• Final result for R (symmetric tensor)

R ¼ 2W;1Ce þ 2W;2ðI1Ce � C2
eÞ þ 2W;3I31þ 2W;5Ce �fMM1 � Ce þ 2W;7Ce �fMM2 � Ce

þ oW

ofMM1

: ðfMM1 �fMM1Þ þ
oW

ofMM2

: ðfMM2 �fMM2Þ: ðB:10Þ

• Intermediate result

oW

ofMMi

: fMMi

 !fMMi ¼ W;2iþ2I2iþ2
fMMi þ W;2iþ3I2iþ3

fMMi: ðB:11Þ

• Alternative representation of R

R ¼ 2W;1Ce þ 2W;2ðI1Ce � C2
eÞ þ 2W;3I31þ 2W;4I4fMM1 þ 2W;5ðI5fMM1 þ Ce �fMM1 � CeÞ þ 2W;6I6fMM2

þ 2W;7ðI7fMM2 þ Ce �fMM2 � CeÞ: ðB:12Þ

Appendix C

The purpose of this appendix is to show in which way the expression s : mi can be represented in terms of

the stress tensor R.
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• Alternative representation of siso : mi

siso : mi ¼ tr 2Fe �
oW
oCe

	 

iso

� FT
e � Fe �fMMi � FT

e

1

I2iþ2


 �
¼ tr Ce �

oW
oCe

	 

iso

� ðCe �fMMiÞ
1

I2iþ2


 �
¼ Riso : symðfMMi � CeÞ

1

I2iþ2

: ðC:1Þ

• Alternative representation of sani i : mi

sani i : mi ¼ tr½2W;2iþ2mi þ 2W;2iþ3ðbe �mi þmi � beÞ� �mi

¼ tr½2W;2iþ2miI2iþ2 þ 2W2iþ3ðbe �mi þmi � beÞI2iþ2� ¼ 2W;2iþ2I2iþ2 þ 4W;2iþ3I2iþ3; ðC:2Þ

Rani i : symðfMMi � CeÞ
1

I2iþ2

¼ 2W;2iþ2I2iþ2
fMMi : ðfMMi � CeÞ

1

I2iþ2

þ 2W;2iþ3ðI2iþ3
fMMi þ Ce �fMMi � CeÞ : ðfMMi � CeÞ

1

I2iþ2

: ðC:3Þ

• Intermediate resultsfMMi : ðfMMi � CeÞ ¼ I2iþ2; ðC:4Þ

ðCe �fMMi � CeÞ : ðfMMi � CeÞ ¼ trðbe �miÞI2
2iþ2 ¼ I2iþ3I2iþ2: ðC:5Þ

• Final result

Rani i : symðfMMi � CeÞ
1

I2iþ2

¼ 2W;2iþ2I2iþ2 þ 4W;2iþ3I2iþ3 ¼ sani i : mi: ðC:6Þ

• Alternative representation of sani 2 : m1

sani 2 : m1 ¼ tr½2W;6m2 þ 2W;7ðbe �m2 þm2 � beÞ� �m1I6 ¼ 2W;6I6m2

: m1 þ 2W;7I6 tr½be �m2 �m1 þm1 �m2 � be�; ðC:7Þ

Rani 2 : symðfMM1 � CeÞ
1

I4
¼ 2W;6I6fMM2 : ðfMM1 � CeÞ

1

I4
þ 2W;7ðI7fMM2 þ Ce �fMM2 � CeÞ : ðfMM1 � CeÞ

1

I4
: ðC:8Þ

• Intermediate resultsfMM2 : ðfMM1 � CeÞ ¼ tr b�1
e �m2 �m1

� �
I4I6; ðC:9Þ

ðCe �fMM2 � CeÞ : ðfMM1 � CeÞ ¼ trðbe �m2 �m1ÞI4I6: ðC:10Þ
• Final result

Rani 2 : symðfMM1 � CeÞ
1

I4
6¼ sani 2 : m1: ðC:11Þ

Appendix D

The purpose of this appendix is to prove the statement

signðs : miÞ ¼ sign R : symðMi � CeÞ
1

I2iþ2

	 

: ðD:1Þ
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Due to (20), this boils down to show

sign ðsani 2 : m1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Es

¼ sign Rani 2 : symðfMM1 � CeÞ
1

I4

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ER

: ðD:2Þ

The expressions Es and ER are in detail expressed as

Es ¼ 2I6 W;6trðm2 �m1Þð þ W;7 trðbe �m2 �m1 þm1 �m2 � beÞÞ;
ER ¼ 2I6 W;6 trðb�1

e �m2 �m1Þ
�

þ W;7I7 trðb�1
e �m2 �m1Þ þ trðbe �m2 �m1Þ

�
:

ðD:3Þ

Exploiting the assumption made at the end of Section 3.1, it can be guaranteed that the terms W;6 and W;7

are always positive. Thus, we have to prove that the expressions trðA �m2 �m1Þ with A ¼ 1, A ¼ b�1
e or

A ¼ be respectively, have always the same sign.

For this purpose, we use the spectral decomposition

A ¼
X3

J¼1

AJuJ � uJ ; ðD:4Þ

(AJ eigenvalues and uJ eigenvectors of A) and represent the vectors n1 and n2 in terms of the eigenvectors uI

(I ¼ 1; 2; 3):

n1 ¼
X3

I¼1

aIuI ; n2 ¼
X3

I¼1

bIuI : ðD:5Þ

If two or three eigenvalues of be are equal, the eigenvectors are chosen such that the orthogonality

uI � uJ ¼ dIJ is fulfilled. The coefficients aI and bI remain undetermined. One obtains

trðA �m2 �m1Þ ¼ ðn2 � n1Þðn2 � A � n1Þ ðD:6Þ

and

n2 � A � n1 ¼
X3

I¼1

X3

J¼1

aIbJuI �
X3

K¼1

AKuK

 
� uK

!
� uJ ¼

X3

K¼1

aKbKAK : ðD:7Þ

Since A is positive definite, its eigenvalues AK are always positive. The sign of n2 � A � n1 does not depend

on the fact whether we make the choice A ¼ be, A ¼ b�1
e or A ¼ 1. Taking into account further that the

invariants Ij (j ¼ 1; . . . ; 7) are positive, the latter result guarantees signEs ¼ signER.
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