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Abstract

Many composites consist of a fabric structure embedded in a matrix material. As an example, in the present paper,
the case of pneumatic membranes is considered. Fibres are often made of material which shows noticeable plastic
deformation. The stiffness of the fibres determines the overall stiffness of the material such that the correct modelling of
the orthotropy of the composite is very important. In addition, the structure experiences large deformations which must
be accounted for. Suitable models for this type of materials are therefore derived in the framework of finite anisotropic
plasticity. A main problem is, however, the lack of experimental data in the literature. For this reason, a computer
model of the composite is set up for numerical experiments. In this way, sufficient data can be generated. The present
continuum mechanical model based on these “artificial” test data can be efficiently implemented into a finite element
formulation. Using a special integration algorithm, the non-linear equation system consisting initially of 10 equations
reduces to two non-linear scalar equations.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many fibre-reinforced composites consist of a fabric structure embedded in a matrix material. In the case
of pneumatic membranes, the fibres are made of polyester, glass aramide or carbon fibres which have been
shown experimentally to exhibit noticeable plastic deformation. Common matrix materials are rubber,
PVC or Teflon. A realistic mathematical description of the material behaviour of the composite can only be
achieved if a sufficient number of experiments is carried out. Due to the anisotropy of the material, this is
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hardly possible in practice, since there are not enough experimental results available in the literature in
order to validate a new material model. To circumvent this difficulty, we begin here the material modelling
on the meso-scale. Using a so-called computer model, we generate artificial experimental data. The com-
puter simulation firstly serves to understand the special deformation behaviour of the composite material.
On the other hand, the data are used to derive a physically reasonable continuum mechanical model of
finite anisotropic elastoplasticity.

Anisotropic elastoplasticity has up to now mainly attracted attention in the context of crystal plasticity,
where the structural vectors in the intermediate configuration are fixed and the yield condition is formu-
lated in terms of the Schmidt stress. Refer for example to the classical works of Hill (1966), Rice (1971) and
Asaro (1983). For the computational aspects see Cuitino and Ortiz (1992) and Miche (1996). In the present
work, the situation is different in the regard that the fibre orientations represent so-called material direc-
tions. The structural vectors transform like material line elements. In the following, this kind of material
behaviour will be described in the framework of phenomenological anisotropic modelling (in contrast to
crystal plasticity, where micromechanical effects are taken into account). To the knowledge of the author, a
concrete model for such kind of anisotropic elastoplasticity has not yet been published in the literature. In
the context of pneumatic membranes, it has to be additionally taken into account that the fibres carry load
only in tension.

In the field of phenomenological anisotropic material modelling at finite strains, several papers focus on
biomechanical problems (Holzapfel et al., 1996, 2000; Weiss et al., 1996; Bonet and Burton, 1998; Gasser
and Holzapfel, submitted for publication). Among the latter authors, only Gasser and Holzapfel (submitted
for publication) include anisotropic elastoplasticity. An alternative approach for fabric-reinforced com-
posites can be found in the recent work of Spencer (2001). Other new formulations of anisotropic material
behaviour have been proposed by Menzel and Steinmann (2001), Sansour and Kollmann (2001) and
Schmidt (2001). The work of Reese et al. (2001) includes one of the few models for the large deformation
behaviour of pneumatic membranes. This concept is, however, restricted to purely elastic material be-
haviour.

The present model is developed in three steps. Firstly (step I), experimental results available for the
polyester fibres are exploited to determine the material parameters of a one-dimensional (1D) incom-
pressible elastoplastic 1D model. The latter is inserted into the computer model, where the fibres are
modelled by means of truss elements. The rubber coating is represented by continuum elements. Using
such a detailed discretization on the meso-scale, one is able to simulate experimental tests. Note that
(computer) test data could also be obtained via a numerical homogenization procedure as it is common
in the context of crystal plasticity or metallic composites. But due to the non-linearity of the meso-stress—
strain relationships, it is in neither case possible to derive an analytical macromechanical stress—strain
relation. Thus, if one is interested to model the material behaviour phenomenologically, a conti-
nuum mechanical model has to be additionally constructed upon the characteristics of the “test” data (step
10).

The present model is based on the idea that plastification occurs, if a certain limit stress in the fibre is
exceeded. It is a highly challenging task to show the consistency of such a model with the dissipation in-
equality. A surprising result is the fact that the plastic deformation is represented by a symmetric tensor-
valued variable. In fact, this can be shown to be the case for more general kinds of anisotropy based on
symmetric structural tensors (see also Svendsen and Reese, submitted for publication). Thus, as in isotropic
elastoplasticity, the plastic spin remains undetermined.

The latter observation proves to be advantageous also from the numerical point of view. The number of
unknowns at the Gauss point level is noticeably reduced. In addition, by means of a suitable integration
procedure the system of originally 10 non-linear equations boils down to two non-linear equations and
eight functional evaluations. The model can therefore easily be incorporated into a finite element formu-
lation (step III).
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2. Computer model
2.1. Fibres

Fig. 1 shows “real” experimental results (uniaxial tension) for the two fibre directions of the fabric
(polyester threads). The stiffer thread is called warp thread, the other one-weft thread. The strain values are
given in percent and refer to the linearized strain measure AL/L (L initial length of the test sample). One
observes a noticeable permanent deformation, when unloading takes place. Note that the hysteresis visible
during reloading is not shown in the picture. In other words, we neglect the rate-dependence of the material
behaviour which is, however, rather small.

The material behaviour of the fibres seems to be somewhat rubber-like. This suggests a model which is
usually applied in the context of rubber elasticity (see Ogden, 1984). The extension to elastoplasticity is
straightforward (Table 1). In these equations, o denotes the Cauchy stress and A the stretch along the fibre
axis. It is multiplicatively decomposed into elastic (4.) and plastic (4,) parts. Using the assumption of in-
compressibility, ¢ can be directly computed from the force ' and the initial cross-sectional area 4. The yield
criterion is standard besides the non-linear isotropic hardening term Hy&* (¢ accumulated plastic strain).
The quantity y represents the plastic multiplier. The material parameters used for the fit in Fig. 1 are given
below:

warp thread :  p = 19595 N/mm? o = 30.37, oyo = 111.5 N/mm?

1
Hip = 5969.49 N/mm?,  Hy =43977191 N/mm?,  y =437 M

Uniaxial tension
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Fig. 1. Experimental results and fit for uniaxial tension.

Table 1
Constitutive model of 1D elastoplasticity

Elastic material law o=u(l— 2", F = a4

Stretch A=1450 =),

Yield condition @ = |o| — (oyo + Hiiné + Hy &) <0

Flow rules 1y = psignol,, € =9 with #<0, 76 =0, >0
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weft thread : = 121.79 N/mm?, o= 36.95, oyo = 62.95 N/mm?,

2
Hj, = 5051.48 N/mm?, H, = 12738581 N/mm?, ¥ =4.47. @
For a common rubber material, the parameter o would take on values around 2. In the present case,
however, the characteristic S-shape of the force—strain curve appears in the small strain range. For this
reason, the value of o is here much higher.

2.2. Composite

Experimental data for composites are frequently found in the form of internal reports of companies but
are poorly documented in the available literature. In order to overcome this problem, we set up a “com-
puter testing device” to obtain appropriate stress—strain data. The material parameters of the orthotropic
continuum mechanical model will then be fitted to these “experimental” results (Section 3).

In Fig. 2, the computer model for the fibre-reinforced membrane is shown. It consists of 3D non-linear
truss elements modeling the fibres and special low-order brick elements describing the rubber coating.

To get a representative response, 10 (to be precise nine in the interior and two cut in half at the
boundary) fibres are placed in each direction. With this two-phase approach, one is able to model the two
constituents separately. For the rubber, the standard Neo—Hookean approach is used. The material be-
haviour of the polyester fibres is described by means of the model derived in Section 2.1.

Since the fibres are not fully extended in their initial configuration (solid line in Fig. 3), one can pull them
in a stress-free state up to the point, where they are stretched straight. The strain at this time is easily
calculated from comparing the initial length of the fibres (L = 10.44 mm) with the length of the test sample
(10 mm). So, the stresses measured up to a strain of about AL/L = 0.44/10 = 4.4% are due to the influence
of the rubber matrix alone and therefore very small (see the rubber elastic range in Fig. 5). The complete
stress—strain plot is given in Fig. 4. Beyond this limit, the stress in the fibres increases rapidly and the stress—
strain relationship of the membrane is dominated by the behaviour of the fibres (anisotropic elastic range).

10 mm

10 mm

Thickness: 0.3 mm

Fig. 2. Computer model.
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g. 3. Fibre behaviour under tension and compression.
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Fig. 4. Computer experiments.

The yield point is indicated by the kink in Fig. 5. The threads are permanently lengthened by the evolution
of the plastic strain. Thus, on the unloading path, they return to the stress-free state already at a strain of
about 10% (warp thread) or 13% (weft thread), respectively. From this point on, the load is carried again
only by the rubber coating. So, although there is a permanent deformation in the fibres, the deformation of
the “computer” membrane is completely reversible. In the direction of compression, the situation is in
general similar to the small strain case.

3. Continuum model

3.1. Strain energy function

We describe the deformation of a continuous body by means of the right Cauchy—Green tensor

C=F"F, (3)
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Fig. 5. Detail of Fig. 4.

where F denotes the deformation gradient. We assume further the existence of a scalar potential
¥ = W(C,F,) + f (&) (Helmholtz free energy function per reference volume), where F,, represents the plastic
part of the deformation gradient. The vector & contains certain internal variables which are specified later in
the context of the model. The part W(C,F,) is usually called strain energy function. If F,, is considered as
elastic isomorphism (Wang and Bloom, 1974; Bertram, 1992, 1998; Svendsen, 1998), W can be represented
as a function of the “elastic” right Cauchy—Green tensor C, = F, T.cC. F, = FZ - F,, the elastic part of the
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deformation gradient defined by F. =F - F '. To model orthotropic material behaviour, the strain energy
function is represented as an isotropic function of C. and the structural tensors

Mlzf\]]@ﬁl, M2:N2®N2. (4)
Thus, it can be written in the form
W: WSOtr(F};T'C'F;17MI7M2>7 (5)

where the index “isotr’ indicates here that 77 is an isotropic function of the given quantities. See for a more
detailed discussion the theoretical works of Boehler (1977, 1979), Liu (1982), Zhang and Rychlewski (1990)
and Svendsen (1994, 2001). It is important to note that C., M, and M, are tensors in the intermediate
configuration. The vectors N; (i = 1,2) are given via the equation (i = 1,2)

— 1 .
=M, =F,-M, -F! with M; = N; ® N, (6)

N,=F,-N -
N P pCpZM,‘

1
l |Fp 'Ni|

where the vectors N; are oriented parallel to the fibres in the reference configuration (see Fig. 6).
Analogously, we define the structural tensors m; with respect to the current configuration by means of

~ 1 . ~ 1
ml‘:ni@ni:Fe'M['Fg — Wlth n,-:Fe~N,- =~ . (7)
C.: M, |Fe . Nl|
Note that in general
NN #0,  mpem#0 (®)

holds, i.e. the material is only initially orthotropic (N; - N, = 0). The fibres do not remain orthogonal to
each other.

Fig. 6. Roven-woven structure with vectors N; (i = 1,2).
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The strain energy function Wy, (Ce, ﬁl , Mz) can be formulated in terms of the three invariants of C,,2
Li=tC, L:=i-u(C)), L:=detC (9)
and the first invariants of C, - Ml, Cz . Ml, C.- Mz, Ci . Mg, Ml . fVL and C. - Ml . Mz, respectively:
I = tr(Ce - Ml) =C.: Ml, I5 .= tr(Cg . Ml) = Cg : Ml, I :=tr(C, - Mz) =C.: Mz,
—tr(C2-My)=C>: My,  Iy:=tr(M;-M,), Iy :=tr(C.- M, - M,). (10)

For simplicity, the dependence on /s and Iy will be neglected. A possible form for the strain energy function
is then the following:

W = Wau(l,5) + We (i, L) + Wani(ds, Is, Is, I7) (11)
A
WNH:ggl_3)_#1n¢g+z(13_1_21n\/2), (12)

W, = K°(I, — 3)" + K (I, — 3)™,

Wawi = K" (I — 1)+ K39 (15 — 1) 4+ K2 (1 — 1) + K325 — 1)
+Kk0p1(1] - 3)61 (14 — 1)51 +Kk°p2(ll _ 3)(52(16 _ 1)52 _|_1(kop12(14 _ 1)§(16 _ 1)( (13)

The latter form has already been chosen by Reese et al. (2001), where only hyperelastic material
behaviour was considered. In contrast to this earlier work, here, the invariants /; (j =1,...,7) are com-
puted in terms of C. and M (i =1,2). In hyperelasticity, C. reduces to C and M to M. The Neo-Hooke
part Wyy models the deformation behaviour of the rubber coating. In the rubber elastic range, this rep-
resents the dominating part in the strain energy function. Consider now a deformation with (C.),, > 1,
(Co)yy < 1, (Co)ys = (Co)1 (Ce)yy and (Ce); =0, if i# j. The vectors N; (i=1,2) are chosen to be
NI = {1,0,0} and N] = {0, 1,0}. It is obvious that in such a case, only the fibres in warp direction (index 1)
contribute to the stress, since the fibres in weft direction (index 2) are not stretched straight. Then, we
observe transversely isotropic material behaviour which can be described with only one structural tensor
M, = M. The expression I, — 1 is positive, whereas Is — 1 is negative. The opposite case is obtained
analogously. Compression in warp and weft direction leads to purely isotropic behaviour. These require-
ments have to be incorporated into the model. For this purpose, the following case differentiation is
suitable.

If one of the expressions in the brackets characterized by the structure inv — ¢ (invariant minus constant)
becomes negative (i.e. the fibres in warp or/and weft direction are not stretched straight), the material
parameter K associated with this term is set equal to zero. In this way, we account for the fact that the
fibres do not contribute to the stress in the composite in their relaxed state.

In order to guarantee a smooth transition for inv = ¢, the exponents o;, f5;, y;, 6; and { (i = 1,2) are not
allowed to be equal to 1 or 2. In order to understand the reason for this restriction, we investigate the
expression f(I3) = (I; — 1) in more detail. Taking the first and the second derivative with respect to C
leads to

of (Is)

S = k=)

(14)
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and

M, M,

= (B, — DB, (L — D2 .
(ﬁl )ﬁ1(4 ) CPSM1®CpZM1

O*f (Is)

The term (14) enters the second Piola—Kirchhoff stress tensor S, whereas (15) is part of the material
tensor & = 40w /dC?. The tensor M, /(C, : M;) can be considered to be constant in the following dis-
cussion and is therefore (for simplicity) denoted by Y. We then obtain

B =1 0f (la) _ Y, Pfs) _ 0.
oc oc” (16)
_ Ofla) _ oy Cf (L) _
pr=2 sc — 2= 1Y, s S Yey.

Thus, if the stiffness K™ is switched off at I = 1, either the stress S (8, = 1) or the material tensor &
(B, = 2) is discontinuous. A smooth transition between different cases (e.g. orthotropy/transversal isotropy)
cannot be obtained, if f; = 1 or , = 1. Similar considerations can be made for the other terms of the strain
energy function.

3.2. Dissipation inequality

Using the Helmholtz free energy function ¥ = Wisotr(F;T-C~F;1,M1,M2) + f(g) in the Clausius—
Duhem form of the second law of thermodynamics leads to the so-called dissipation inequality

. 1. aw\ 1. .
— zC= —2—=]:z : 20,
¥+S:5C (s Zac) SCHEil+q820 (17)

where 1, the stress tensor X and q are defined by

— ow
p =K, F, zz—a—Fp-Fg and q=—

of (e)

1
dJg '

(18)
respectively. The vector ¢ contains internal variables describing the hardening of the material. The in-
equality (17) is sufficiently fulfilled by S =20W/0C, X :1, > 0 and q-& > 0. Evidently, there are many

possibilities to choose an evolution equation for I, in such a way that the latter requirement is satisfied. The
main difficulty, however, is to match the “experimental” results.

3.3. Yield functions and flow rules

Using the Gateaux derivative

~ ~ ow _ _
DW(Ce,M;,M,) : AC = ac. (F,"-AC-F,"), (19)
it is easily shown that
ow
—1 -T
S=2F' 55 F, (20)

holds. From that, we compute the Kirchhoff stress tensor T = F - S - FT with (see Appendix A)
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ow

=2F, - FT
T ehe, e
a ow ow .
b +2—(Ib. —b2) +2—L1 “iso”
6[1 6[ ) 3
ow 0 (21)
+26 m1+261 (b, -m, +m, -b,) “anil”
+26Wm2+26W(beﬁ2+ﬁ2be) uani2?77
ol oL

where the tensors m; (i = 1,2) are given with m; = F, - M,— . FeT = b;.om;. The first three terms (second line of
(21)) represent the isotropic part of T from now on denoted with 7;,. It is derived from the strain energy
parts Wyu and W, alone. Accordingly, we define 7,1 and t,,, coming from ;.

Exploiting the fact that W is an isotropic function of C., M; and M;, it can be shown that the stress
tensor X is symmetric (see Appendix B):

ow ow )% .
r=2—C.+2—(LC,—-C 2—[1 “1s0”
T o) H 25 Bl tiso
ow  ~ ow .
P2 LM 2 (I5M, +C. - M, -C.) “anil” (22)
4
ow ow .
+2a] ]6M2 +2a—([7M2+C M2 C ) “ani2”.
7

The scalar product X : 1, therefore reduces to X : d,, where d, = syml, denotes the symmetric part of I,. The
scalar product X : d,, can be rewritten with

z:dy = (F,'T-F") 16, (23)
where the tensor
1
F' . FT=2C"'.C-S 2 M, +2 M .c-M,-Cc-C!
- T—2C - C-Si(C, Gy) + Wi Ml T Wst.Ml(5 1+C'C-M,-C cp)
Is 1 —1 -1
W M2M2+2W6W(I7M2+Cp .C.M2.C.Cp), (24)

obviously represents a function of C and C,, (the structural tensors M; (i = 1,2) in the reference configu-
ration can be considered to be given). Therefore, in contrast to many other approaches in anisotropic
plasticity, the model is closed if we consider the symmetric tensor C, as internal variable. The rotational
part in F, =R, - \/Ep, i.e. R, remains undetermined. The stress tensor Si, is computed via S;, =
20(Wan + W,)/0C = F 1, F " and represents the isotropic part of S.

At this point, the computer model proves to be very useful, since it enhances our understanding of the
material behaviour majorly. The comparison between the stress—strain curves computed for uniaxial and
biaxial tension makes evident, that the fibres in warp and weft direction hardly interact with each other (see
Fig. 7). This is understandable from the fact that the warp threads are not directly linked to the weft threads
(see Fig. 2). The interaction is only due to the rubber matrix, the stiffness of which is very low in comparison
with the one of the fibres. So, we are able to treat the pneumatic membrane as two 1D systems which are in
its initial state oriented orthogonal to each other. Keeping this in mind, it can be easily accepted that
plastification begins, when the Cauchy stress in the fibre direction exceeds a certain value. If one takes
additionally into account, that the material is nearly incompressible, we may use instead of the Cauchy
stress also the Kirchhoff stress and express the projection of this stress on n; in the form = : m; (i = 1,2). In
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Uniaxial tension in warp direction (c_4=1.085) Uniaxial tension in weft direction (c_6=1.087)
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Fig. 7. Experimental results and fit for uniaxial and biaxial tension.

order to fulfill the dissipation inequality, it is important to clarify how the latter quantity is related to the
stress tensor X. After some steps, one obtains for i = j (i, j = 1,2) the result

— 1
(Tiso + Tanii) m; = (Ziso + Zzmij) : sym(Mj . Ce) 7 - (25)
by

Note that Einstein’s summation convention does not hold. However, it has to be emphasized that (25)
does in general not hold for i # j. For a detailed derivation of the latter statement see Appendix C. Ex-
ceptions are the cases:

(a) The fibres remain orthogonal to each other (1(11 ‘No=n-m= 0).
(b) The elastic part of the deformation is small (b, ~ 1).

Looking at Fig. 1 it is recognized that assumption (b) is justified. Plastification begins at about 1% strain.
In the computer model (see Fig. 5) the plastification in the fibres does not start before ~5.5% strain which is
due to the fact that the fibres are not stretched straight from the beginning. However, this difference with
respect to the 1D consideration is due to the geometry of the computer model and should therefore not be
included in the material modelling at this stage of the derivation. Thus, the choice (i = 1,2)
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P = ’2‘ Sym(M -Co) — | = (0 + Hini&; + Hu V) (26)

by

can be considered to be reasonable from the physical point of view. The coefficients ¢; of q = g;e; (e;
cartesian basis) are here given with ¢; = Hj;&; + Hu: €4 (i = 1,2). The evolution equations are chosen as

"- i

where the vector ¢ introduced in (17) is specified with &' = {¢,, &, }. Above that, the Kuhn-Tucker con-
ditions y;, = 0, &; <0, y,®; =0 (i = 1,2) have to be fulfilled. Exploiting the residual dissipation inequality
(17) yields

éi = ')}[7 (27)

ZY,SIgn(E sym(M, - C.) 7 )Sym(ﬁfce)

Dy b

2

S5 im0, ) g smi

= biys 2142

] + 7 (Hlinifi +Hn1i£;'m) = 0. (28)

Clearly, the inequality is always fulfilled, since the product of the sign-function with the scalar product as
well as the plastic multiplier and the accumulated plastic strain are positive.

Although the expression 7 : m; cannot be completely transferred into an expression including X, it would
be certainly still preferable from the physical point of view to work with the yield criteria (i = 1,2)

&, =|t:m — (UYi + Hyini€; + Hnlié?i) >

and the flow rule

1
—Efvbe =F.-d, F] = Zyl sign(t : m;) sym(m, - Z% sym(— b ) (30)
i=1
It is obvious that in the case of @; being an isotropic function of T and t being coaxial with b., we obtain the
classical evolution equation for finite isotropic elastoplasticity written in terms of the Oldroyd derivative of
b., the tensor Z,b, (see Simo and Miehe, 1992).
It remains to show that also (30) fulfills the dissipation inequality. Inserting

1 1
d,=—-F,'-2b, -F' Zy,mgn t:m;)sym(M, - Co) - (31)
2°° ¢ i=1 4
into (17) leads to the requirement
2
.. —~ 1 . . .
Zy,- sign(t : m;) [E : sym(M; - Ce)] } + 9 (Hnniéi +Hn1i~ff‘) = 0. (32)
P 2i42
Thus, if the statement
— 1
sign(t : m;) = sign (Z :sym(M,; - Ce) ) (33)
b

holds, also (30) fulfills the dissipation inequality. The correctness of the statement (33) is proven in Ap-
pendix D. L

If the fibre orientations remain orthogonal to each other during the deformation (n; -n, =0, N; - N, =
0), both, (27); and (30), reduce to

(;“p);' =7 Signfi(ip)i- (34)

This relation is equal to the evolution equation for the plastic stretch in the fibre model (see Table 1).
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3.4. Parameter identification

The parameters of the material model presented in the Sections 3.1-3.3 are subsequently fitted to the
computer experiments already discussed in Section 2 (see Fig. 7). The fit is at first restricted to uniaxial and
biaxial tension. Obviously, the correlation between the “experimental” results and the results obtained with
the continuum mechanical model is very good. At this point, however, one has to discuss the special geo-
metry of the computer model. Due to the thickness of the computer test piece (f = 0.3 mm = kL/n with
n = 10 and £ = 0.3, n number of fibres in each direction) the loading of the fibres does not begin before the
test piece is deformed in such a way that the fibres are stretched straight. Since the original length of the
fibres is computed with L = L\/1 + k2, this deformation is described by the stretch 2* = /1 + k2 in each
direction. But it has to be taken into consideration further that due to plastification, the length of the fibres
as well as the dimensions of the computer model are increased in each load cycle. The multiplicative de-
composition of the stretch in the fibre therefore reads

b Lyew L™ +AL,

T L™ AL, LW (35)
‘,_B%/—/
AP iy

where AL, is the lengthening of the whole model (including the fibres) due to plastification and Ly the
current length of the whole model. The stretch of the computer model in one direction is described with
(index i omitted)

Loew L+AL,

= : 36
L+AL, L (36)

7 y

e P

2™ — 1 indicates the onset of the fibre loading. The associated elastic stretch 2* of the computer model is
computed with
LV1+ k2 + AL
Loew =L™ + AL, = X ="2——— P 37
© + p Ae L +ALp ( )
In the present computations, the plastic stretch hardly exceeds the value 1.1, i.e. the maximum of AL, lies at
about 0.1 L. i: can therefore be approximated by the constant value

RNV = (C)f = (C)p= () = 1+k. (38)
Certainly, the value X: is meaningless, if a rotation of the fibres takes place. For this reason, a relation
between igb and the invariants I, (m = 4, ...,7) needs to be established:

e uniaxial and biaxial tension

(C)y 0 0
[(Ce)y) = 0 (Ce)x 0 5 (39)
0 0 ~(Cy(Cn
= L= (Ce)yy, Is = (Ce)%]’ Is = (Ce)ps I = (Ce)§2~ (40)

From that, we obtain

F=IF=1+k, IF=IF=1+k)] (41)
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e shearing
The matrix of the deformation gradient F takes the form
1 00
Fjl=1a 1 0, (42)
0 0 1

where the parameter a represents the derivative of the displacement in vertical direction (u,) with respect
to X;. The matrix of the right Cauchy-Green tensor is then computed with

l+a*> a 0
[C,:,-] = a 1 0]. (43)
0 0 1

One obtains Iy = 1 + a® and Iy = 1. This result is physically reasonable, since the actual length of the
fibre (if it is stretched straight) is computed with

L™ =11+ a2 (44)

new

If there is no plastic deformation, this yields for the stretch in the fibre the relation

;b L Vit
Lfib 1 ¥ 2 :
Thus, the loading of the fibre begins at a = k£ = 0.3 mm (30% shear strain). As it is the case for uniaxial
or biaxial tension, the lengthening of the fibres due to plastic deformation would change this result slightly.

The influence is again neglected, and we obtain independent of the fact, whether a pure stretching of the test
piece or a shear deformation is considered, the result

IF=1r=1+k. (46)
4 6

(45)

A problem arises due to the influence of the invariants /s and /7. Considering again the special case of
C. = C, the invariant I; takes on the same value as I, which means that terms associated with I; would be
switched on although the weft thread remains more or less undeformed. This difficulty can be circumvented
by omitting the terms depending on /5 and 7 in W,,;. As fringe benefit, one obtains a major simplification of
the model.

It turns out further that the coupling terms associated with the constants K*°P* and K*°P!2 are not needed
to fit the computer results.

The strain energy term W,,; takes then the simple form (cy2 & I3f o)

Wani = Ki™ (I = e) + K" (Is — o), (47)

where the parameters K{‘“i" (i = 1,2) are only unequal to zero, if I;,, > ¢;1». The material parameters used
to fit the experimental results in Fig. 7 are given below.

Kl = 1000 N/mm?,  K™? =1000N/mm?, oy = 50N/mm?, oy, = 25N/mm?,
Hyn1 = 2480 N/mm?,  Hjyo = 2150 N/mm?,  Hyp = 65 x 10°N/mm?,  Hy, = 11 x 10°N/mm?,
Br=23, 79,=23, 5 =469, 1 =469, KN =K =K =[grrZ_(, i=1,2.

Note that the small strain stiffness is practically only determined by the Neo—-Hooke part of the model,

because the other parts of the stress are not active in this strain range. The Neo-Hooke parameters can
therefore be chosen equal to the values in the computer model (u = 1.4 N/mm?, A4 = 300 N/mm?). It should
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Fig. 8. Shear test.

be emphasized that the model is fit to the three experiments simultaneously. In this way, we obtain one set of
parameters which shows a very good agreement for all three tests. An exception are the geometrical pa-
rameters ¢4 and ¢g which take on different values in uniaxial and biaxial tension (see Fig. 7). The lower value
of ¢4 in biaxial tension is due to the effect of the weft fibres which are already stretched straight, when the
loading in the warp fibres begins. It would also be possible to look at ¢4 and ¢4 as deformation-dependent
functions, e.g. ¢y = c4(Iy, Is), c6 = c6(Is,Is). Such an idea should be investigated in further research.

At last, it is certainly important to test the model for the case that the fibres rotate. For this purpose, we
look at the shearing of the computer test piece (see Fig. 8). The boundary conditions in the third coordinate
direction are chosen such that a plane stress state is obtained.

In Fig. 9, the “experimental’ results are compared with the results computed with the continuum me-
chanical model.

As pointed out in the above, only the warp thread is stretched such that only the terms including I, are
effective. The elastic range and the onset of plastification are very well described. Note that the material
parameters have not been fitted again. In the hardening range, the shear force computed with the con-
tinuum mechanical model increases slightly too quickly. Although the discrepancy is still tolerable, it might
indicate that the use of only two scalar variables (&, and &,) to describe the accumulated plastic strain could
be too restrictive. This question should be also discussed in further work.

Shear test
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g. 9. Experimental results and fit for shear test.
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4. Numerical aspects
4.1. Integration of the evolution equations

We introduce the short hand notation
a; := —7;sign(t : my) (48)
and reformulate (30) as
doi) gy
,El’vbC:F~<dth ) -F :;a[(m;‘bc—t-bc-m;). (49)

1

Pulling back (49) to the reference configuration yields

d _ 2 -1 -1 1
The latter equation is now integrated by means of the backward Euler scheme leading to
l1—22:M BB ey o l1—ZZ:C M, _GAL ) (51)
2 T M, p p 2 p ‘c:M; ] T
A AT
Transferring this relation again to the current configuration gives
A b, +b, - AT = b (52)
where the abbreviations
A — 1 2 ria —
A:F~A-F':§1—Zl:a,-Atm,- and B/ =F.C| F" (53)

have been utilized. This integration rule is very advantageous from the computational point of view, since it
represents a linear relation between b, and b™' (note that b can be considered to be given at the Gauss
point level). In index notation, (52) reads

Aik(be)kj + (be)ikAjk = (bgia])ij = (Aikéjl +Ajk5il)(be)k1 = (bgial)ij' (54)
———————
Bi/kl
Using the symmetry of b,, the matrix D;3, can be further symmetrized to read
Dij = %(Aik(sj/ + Apdy + Audy + Ajdu). (55)
In Voigt notation, the relation & : b, = b;rial is written as
be _ D—lb;rial’ (56)

with matrices (or vectors) denoted by slanted boldface letters. Since in the local integration procedure to be
carried out at the Gauss point level, the deformation F and consequently also the structural tensors m; are
held constant, & contains the slip rates y; (i = 1,2) as only unknowns.
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In summary, at the Gauss point level, we have to solve the following equations (Ay, := y,;A¢):
r(be, Ay, Apy) = be — DB = 0,
5i(Si Ay;) = & — & — Ay =0, (57)
&;(2(be), &) = 0.
Note that the Voigt notation of 7 is indicated by 7. The use of (57); and (57), in (57); leads to
@Ay, A7) = [ml e (D(Ay, Ap) BE) | = (00 + B (G + A) + HunG + A2)) =0 (58)
Si(&y;)

Thus, the local 10 x 10 equation system reduces to the iterative solution of two non-linear scalar
equations. The remaining unknowns are determined by directly evaluating the functional relations.

4.2. Local Newton iteration

In order to apply Newton’s method to solve (58), the consistent linearization of (58) with respect to Ay,
and Ay, is necessary. In the present case, it is, however, numerically inefficient to compute the tangent
analytically, since it involves many multiplications of 6 x 6 matrices. Instead, we use the classical numerical
tangent which represents a scalar or, in the most complicated case, a 2 x 2 matrix.

Additionally important is the fact that one has to deal here with a simple kind of multisurface plasticity,
where a differentiation between the following four cases has to be carried out:

(1) @, <0, @, < 0: no further plastification;

(2) @, =0, @, < 0: further plastification in the warp fibre;
(3) @, <0, &, = 0: further plastification in the weft fibre;
(4) & =0, @, = 0: further plastification in both fibres.

Depending on the sign of the start values 45,‘.“31 (i = 1,2) at the beginning of the iteration, one proceeds
into the Newton loops for the Cases (2)—(4). Case (1) means that no further plastification occurs. The loops
for Cases (2) and (3) involve the iterative solution of either ¢; = 0 (Case (2), active set: 1) or &, = 0 (Case
(3), active set: 2). In Case (4), both equations, @, = 0 and &, = 0, have to be solved simultancously. The
active set includes the systems 1 and 2. During the iteration, negative values of Ay, or Ay, might occur. In
order to avoid this problem, the side condition Ay, = max(0, Ay,) is introduced. If no solution of (58) can be
found, the active set has to be modified according to the value of Ay, and Ay, at the end of the failed
iteration. See for more information about the active set strategy in the large strain domain the references
Cuitino and Ortiz (1992) and Miehe (1996).

4.3. Solution of the weak form

The weak form of the balance of linear momentum reads
g(u, ou) = / P:oFdV —g, =0, (59)
%o

where P = F - S(C, C,(C)) denotes the first Piola—Kirchhoff stress tensor, 0F = Grad du the variation of the
deformation gradient and dV a volume element in the undeformed configuration %,. Applying the nu-
merical integration procedure introduced in Section 4.1, the second Piola—Kirchhoff stress tensor S is
seen at the global finite element level as a function of the right Cauchy-Green tensor C only. Further, g,
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represents a short hand notation for the virtual work of the external loading. The consistent linearization of
(59) yields

g(u, ou) ~ g(u, ou) + Ag(u, ou) =0 (60)
with
opP
Ag(u,ou) = / — AF | : 0FdV + Ag,. (61)
~~
o

In the finite element computations, the matrix form A of the tangent tensor ./ is replaced by the nu-
merical approximation
Pi(ﬂ7"'7F}+87"'aF'9)_Pi(Flv F; 7}79)

Ay = 8 U R . (62)

Note that for this purpose, P and F have been formulated in vector form. The parameter ¢ is chosen equal
to 1078,

5. Examples

In this section, two examples are discussed for the purposes (1) to study the behaviour of the composite
material in more general deformation and stress states and (2) to validate the finite element implementation.
Due to the rather high numerical effort at the element level, typical for sophisticated material models, it is
suitable to work with one Gauss point element formulations. For various kinds of hourglass stabilizations
refer to Reese et al. (1999, 2000).

5.1. Inflation of a rectangular membrane

Pneumatic structures obtain their stability by inflation, i.e. they are exposed to a deformation-dependent
pressure loading p (see e.g. Schweizerhof and Ramm, 1984). Frequently, pieces with different fibre orien-
tations are sewed together.

In the left half of the system (Fig. 10), the fibers are lying in horizontal and vertical directions (0°/90°,
solid line: warp thread, dashed line: weft thread). In the right half, the orientation angles —45°/+45° are
chosen. At the boundaries defined by X; = 0 mm, X; = 10 mm, X; = 0 mm and X, = 16 mm, all degrees-of-
freedom are fixed.

In Fig. 11, the evolution of the Kirchhoff stress in the direction of X; is shown. It is clearly visible that a
stress concentration arises in the neighbourhood of the seam. In general, t;; reaches much higher values
than T2 (Flg 12)

Looking in addition at the deformed system (Fig. 13), it is evident that the left side of the membrane
(fibre orientations 0°/90°) shows noticeably stiffer behaviour than the right hand side (fibre orientations 45°/
—45°).

It is further interesting to observe the evolution of the plastic deformation. The plots in Fig. 14 (Fig. 15)
show the regions, where @ =0, @, < 0 (@, =0, @, < 0) hold. The plastification starts in the area of the
stress concentration which is a physically reasonable result.

At p = 1.21 N/mm?, there is a very small region (not shown in the plots), where both slip systems are
active (@, = @, = 0). This region increases, however, quickly, until in almost the entire system, plastifi-
cation occurs in both directions (Fig. 16).
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% A -
16 mm ,
X1} solid line: warp thread t=0.3mm

dashed line: weft thread

Fig. 10. Rectangular membrane, geometry and boundary conditions.

STRESS 1 STRESS 1
-2.54E+00 -8.17E+00
0.00E+00 0.00E+00
2.00E+00 2.00E+00
4.00E+00 4.00E+00
6.00E+00 6.00E+00
8.00E+00 S 8.00E+00
1.00E+01 . '_";v-- 1.00E+01
1.09E+01 L Ve, 4.70E+01
Time = 2.10E-01 j 7 Time = 6.10E-01
STRESS 1 STRESS 1
-2.29E+01 -4.45E+01
0.00E+00 0.00E+00
2.00E+01 4.00E+01
4.00E+01 8.00E+01
6.00E+01 1.20E+02
8.00E+01 1.60E+02
1.00E+02 2,00E+02
2.25E+02 5.62E+02
Time = 3.41E+00 Time = 8.81E+00

Fig. 11. Kirchhoff stress 7;; for different load states (p = 0.21, 0.61, 3.41, 8.81 N/mm?).

5.2. Pneumatic column

In the second example, the deformation behaviour of a classical pneumatic construction element is in-
vestigated in detail. The geometry of the discretized system is shown in Fig. 17.

Only one half of the column is discretized. The pressure loading p acting on the inner side of the column
is visible in the middle part of Fig. 17. In addition, a vertical force F' pointing in the negative z-direction is
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-4.31E+01
-1.00E+01
1.20E+01
3.40E+01
5.60E+01
7.80E+01
1.00E+02
1.65E+02

Time = 8.81E+00

Fig. 13. Deformed system for p = 8.81 N/mm?, different perspective.

Acc. plastic strain xi_1 Ace. plastic strain xi_1
0.00E+00 0.00E+00
1.00E-05 1.00E-05
2.80E-05 2.80E-05
4.60E-05 4,60E-05
6.40E-05 6.40E-05
8.20E-05 8.20E-05
1.00E-04 1.00E-04
5.86E-03 2.28E-02

Time = 6.10E-01 Time = 1.21E+00

Fig. 14. Accumulated plastic strain ¢, for different load states (®; = 0, @, < 0).

Ace, plastic strain xi_2

0.00E+00
1.00E-05
2,80E-05
L 4.60E-05
6.40E-05
202 Gy B0 SN 8,20E-05
£ : 1.00E-04
B.B7E-03

Time = 1.21E+00

Fig. 15. Accumulated plastic strain &, for p = 1.21 N/mm? (&, = 0, &, < 0).
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Ace. plastic strain 0.5 (xi_1+xi_2) Acc, plastic strain 0.5 (xi_1+xi_2)

0.00E+00 0.00E+00
1.00E-05 1.00E-05
4,01E-03 1.20E-02
8.01E-03 2 40E-02
1.20E-02 3.60E-02
1.60E-02 4 BOE-02
2.00E-02 6.00E-02
3,09E-02 7.53E-02

Time = 3 41E+00 Time = 8.81E+00

Fig. 16. Average accumulated plastic strain § (¢, + &) for different load states (@, = 0, @, = 0).

4000 mm

thickness: 3 mm

He

600 mm
+—t

780 mm

Fig. 17. Pneumatic column, (a) geometry, (b) pressure loading, (c) cross-section.

applied at the top. At the bottom of the structure (z = 0), all three degrees-of-freedom (the displacements in
the three coordinate directions) are fixed. The system is covered with a top made of usual rubber material
(u = 1.4 N/mm?, 4 = 1000 N/mm?). The pressure loading is also applied at the inside of this cover con-
tributing to the vertical loading of the system. The third degrees-of-freedom (displacements in z-direction,
i.e. w) at the top of the structure (z = 4000 and 4003 mm) are linked together, the cover therefore maintains
always its horizontal orientation. It is further assumed that the nodes lying in the plane y = 0 (see right part
of Fig. 17) do not move in y-direction. The displacement in x-direction is hindered at x = 0, z = 4000 mm
and x = 0, z = 4003 mm.
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In the first computation, we study the deformation behaviour of the column for different fibre orien-
tations. The loading is applied in two-phases:

(1) inflation of the column: increase of the internal pressure p up to a certain value p,
(2) vertical loading of the column: the pressure is held constant (p = p), increase of the vertical force F.

In Fig. 18, the deformed configurations of the column, including the contours for the displacement w, are
shown for different fibre orientations (load state: end of phase (1), here: p = 0.6011 N/mm?). The maximum
and minimum values in mm are listed in Table 2 (columns a). Obviously, the angle of the contour lines is
almost identical with the orientation of the warp thread.

The contours of the Kirchhoff stress in z-direction 133 are plotted in Fig. 19, for the max/min values refer
to Table 2 (columns b). For the orientations 70°/—-20°, 65°/-25° and 60°/-30°, the maximum values of 733
are found in the vicinity of the plane y = 0. In contrast to the computations based on the angles 90°/0° and
45°/-45°, compressive stresses occur which cause wrinkling effects at the top and at the bottom of the
structure.
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Fig. 18. Contour plots of w, fibre orientations: (a) 90°/0°, (b) 70°/-20°, (c) 65°/-25°, (d) 60°/-30°, (e) 45°/—45°.

Table 2

Maximum/minimum values of w (a) and 733 (b)
Orientation (a) (b)

max w min w max 1733 min 733

90°/0° 44.8 -1.23 56.2 0
70°/-20° 9.57 -172 66.5 -3.38
65°/-25° 0.90 =305 62.5 -2.66
60°/-30° 0 —478 55.5 -2.27

45°/-45° 0 —-861 38.0 0
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Fig. 19. Contour plots of the Kirchhoff stress 733, fibre orientations: (a) 90°/0°, (b) 70°/-20°, (c) 65°/-25°, (d) 60°/-30°, (e) 45°/—45°.

It is further interesting to compare the process of plastification for different fibre orientations. In Fig. 20,
one sees the regions, where @ <0, &, =0 hold. The domain, where both slip systems are active
(9, = @, =0), is plotted in Fig. 21. In the dark region, the accumulated strain, (&, or %(é, + &), respec-
tively), is smaller than 10~°. The maximum values are given in Table 3. Obviously, the smaller the angle of
the warp thread, the larger becomes the region with @; = ¢, = 0.

Fig. 20. Accumulated plastic strain &, (@, <0, @, =0), fibre orientations: (a) 90°/0°, (b) 70°/-20°, (¢) 65°/-25°, (d) 60°/-30°,
(e) 45°/-45°.
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Fig. 21. Accumulated plastic strain % (& + &) (@, =0, d, = 0), fibre orientations: (b) 70°/-20°, (c) 65°/-25°, (d) 60°/-30°, (e) 45°/—45°.

Finally, it remains to investigate how the system behaves in load phase (2). The force—displacement
curves for different fibre orientations are plotted in Fig. 22. The letter w refers to the displacement of the top
of the structure in the negative z-direction. It is counted from the end of phase (1) (w = 0). For the angles
90°/0°, an almost linear relationship between F and w is obtained (solid curve). The kink indicates the load
state, when compressive stresses occur for the first time. At a slightly increased load, the system loses its
stability. Interestingly, other fibre orientations as 70°/—20° and 65°/-25° lead to stiffer behaviour of the
membrane for loads in the range of 0-2.5 kN. Beyond this limit, the influence of the compressive stresses in
the system becomes too severe causing instabilities due to wrinkling. If one chooses the fibre orientations
60°/-30° and 45°/-45°, the system is rather soft in load phase (1). At the beginning of load phase (2),
negative values of w occur for small values of F. Thus, the top of the structure moves upwards, although the
load F is directed in the opposite direction. This can be explained by the fact that the stress components t;
(i = 1,2, 3) decrease with increasing F, causing the system to relax.

One important point, however, should be mentioned at last. The pneumatic column can be seen as a
closed system, where the equation of state for an ideal gas p/ = nk® (V enclosed volume, n number of
molecules, £ Boltzmann’s constant, @ absolute temperature) has to be fulfilled. For isothermal processes, it
boils down to the statement p/ = constant. Increasing the load F results due to the unloading of the fibres
to a decrease of the volume. According to the gas equation, the pressure must increase leading eventually to
a further loading of the fibres. On the other hand, the volume might increase accompanied by a decrease of

Table 3

Maximum values of &, (a) and §(&; + &) (b)
Orientation (a) (b)

max &, maxi (& + &)

90°/0° 2.84 x 1072 &, not active
70°/-20° 2.92 x 1072 1.65 x 1072
65°/-25° 2.93 x 1072 1.68 x 1072
60°/-30° 1.69 x 1072 1.69 x 1072
45°/-45° 1.15 % 1072 1.71 x 1072
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Force-displacement curve
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Fig. 22. Force—displacement curves for load phase (2), different fibre orientations.

the pressure. From the engineering point of view, however, it can be assumed that the first situation is more
realistic. Then, negative stiffnesses of the column as shown in Fig. 22 could not occur. The gas equation can
be included int the finite element implementation by treating the pressure as additional degree-of-freedom
(see e.g. the recent work of Rumpel and Schweizerhof, in press). The application of such an algorithm in the
context of pneumatic membranes is currently under investigation.

6. Conclusions

The main goal of this paper has been to model the anisotropically elastoplastic material behaviour of
fibre-reinforced membranes. Due to the lack of enough experimental data, a computer model has been set
up. Simulating various biaxial and uniaxial experiments with such a “virtual” test piece, we are able to
generate sufficient test data. As an additional benefit, one gains a deeper understanding of what happens
inside the material.

It is crucial to consider plastic deformations in order to obtain a realistic description of the material
behaviour. Interestingly, one can show that based on the assumption that the structural vectors transform
like material line elements, the plastic deformation is represented by means of a symmetric tensor-valued
internal variable. Thus, the plastic spin remains undetermined. This is a surprising result in the context of
anisotropic material behaviour. The integration of the material equations is efficiently achieved via a
backward Euler scheme applied in the framework of a return-mapping algorithm. The finite element im-
plementation can therefore be carried out in a straightforward manner. The numerical investigation of an
inflated pneumatic column shows that the fibre orientation has an important influence on the resulting
force—displacement curves.
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Appendix A
In this appendix, the computation of the Kirchhoff stress tensor 7 is shown in detail.

e Derivative of W with respect to C,
ow _ow o, oW ol, OW ol OW dl, OW dls OW 0l OW 0l

=— — — — — — —_—— Al
oC. o oC. " an o, T on oc, "o, oc, T ar ac, T ar, o, T ok acy (A1)
o, oL ol 1
ace_l’ aCe_111—Ce, G—Q_I3Ce , (A.2)
Ohiyy Ohiy3 VY
ace - Mi7 6Ce - Ce Mi+Mi Ce~ (A3)
e Definition of m;
_ — F-M;,-FT C: M,
m,- - Fe . Mi . F;r - C . Ml. Cp : Ml. == mi12i+2. (A4)
e Kirchhoff stress tensor
ow
=2F, - — - F'
! 3G, ¢
ow ow ow
=2— 2— (Iibe — b)) +2—11 A.
ol be + ol (fib. = be) + oL (A-3)
ow _ ow o
+26—I4m1+26—15(b6-m1+m1-b6) (A6)
ow _ ow o
+26—16m2+26—17<be'm2+m2'be). (A7)
Appendix B

In this appendix, the computation of the stress tensor X is discussed. In the course of this, the symmetry
of this tensor comes out as another important result.

e Derivation of the derivative 0 /0F,

— ow W~ W
DW(Ce, M, M) iy = — o (Co L 417 Ce ) + = (M) +——: (M), B.1
(CMi M) s Fy = = (Gl 17 Co) s (V) o (V) (B.1)
. . . 1 C: M, —
R . L. T . .. T — p ! .
(M) (Fp M, -F'+F,-M, FP)CP:M,- M (B.2)
e Intermediate result
Co:M,  /.r oo 1
CPZMI__(FP.FPJFFF,.FI)).M;—Cp:Mi
. . 1 — N
T —T T T -1 . _ T . _ .
— (FI-F,"-¥TF, ¥, F, .Fp).M[Cp:Mi_<lp+lp).Mi_2dp.M,~. (B.3)
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Time derivative of M,-

(M) =1,- M, + M, - I} —2(d, : M,)M,.

Final result for

DW(Ce,Ml,,Mz) . Fp
=2(—c W oW = W~ W

—~ - W~ —
e'—+ — M1+ — 'M2_ — .(M1®M1)— — Z(Mz@Mz))le.

oC. oM, oM, oM, oM,

Stress tensor X
ow ow —~ ow —~ ow ~  ~ ow ~ —~
E:2Ce'—_2T'M1_2 — M2+2 — (M1®M1)+2 — (M2®M2)
oC. oM, oM, oM, 2

Summation of the first three terms (W; = 0W /dl;)

ow — — —
Ce- 5= WiCot Wa(hiCo = €2) + Walil + WeCo- My + Ws(€2- My +C. - M, - C: )
+VV,GCe'M2+W7<C§'M2+Ce'ﬁ2'ce>v
W~ — —
——M; = —W,C.- M, — WsC; - M,
oM, ' '
W~ — —
—— My = —WCe- My — W,C; - M.
oM, '

e Final result for X (symmetric tensor)

L = 2W,Ce + 2Wo(I,Ce — C2) + 2W3I1 + 2WsC, - M - Ce + 2W5C, - M, - C,
W o~ o~ W~ ~
+a~ (M1®M1)+ — (M2®M2)
1 2

e Intermediate result

W~ \— — —
(ﬁ : Mi) M; = WaiahioM; + W2i+312i+3Mi-

e Alternative representation of X

L = 2W,Ce + 2Wo(I,Ce — C2) + 2WsI1 + 2WlyM, + 2Ws(IsM + C. - M, - Ce) + 2WlM,

4 2W4(I;M; + Ce - M - Co).

Appendix C
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(B.5)

(B.6)

(B.10)

(B.11)

(B.12)

The purpose of this appendix is to show in which way the expression 7 : m; can be represented in terms of

the stress tensor X.
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e Alternative representation of 7, : m;

Tiso:mi_tr[2F6‘<aW> 'F:'F3~M['FT ! :|_tI'|:Ce<aW> (Ceﬁl) 1

aCe ¢ [2i+2 aCe [2i+2
= Tio : sym(M; - Co) ——. (C.1)
b
e Alternative representation of T,,; : m;
Tanii © My = tr[2Wo; om; + 2Woi5(be - m; +m; - be)] - m,
= tr2Waiomylyin + 2Wai3(be - m; +m; - be) Dio] = 2Woinboin + 4Woishiys, (C.2)
—~ 1 ~ ~ 1
Xonii Sym(M,- : Ce) — = 2Wai2hhi oM ¢ (Mi : Ce) a—
by b
—~ —~ —~ 1
+ 2W2i+3(12i+3M1‘ + Ce . M,‘ . Ce) : (M, . Ce)[ . (C3)
2i42
e Intermediate results
M, : (MI - Ce) = by, (C4)
(Ce-M;-Co) : (M; - C,) = tr(be - m) 12, = Dyialysn. (C.5)
¢ Final result
Xonii sym(ﬁi : Ce) = 2W,2i+212i+2 + 4W,2i+3[2i+3 = Tani; - M. (C-6)
2i42
e Alternative representation of ., : m;
Taniz - My = tr2Wemy + 2W7(be - my + m, - be)] - myls = 2Welgm,
1my + 2W7]6 tr[be ‘M -m; +mp -my - be]7 (C7)
—~ 1 ~  ~ 1 —~ —~ —~ 1
Zani2 : sym(M1 . Ce)f = 2VV,616M2 : (M] . Ce)f + 2W7(17M2 =+ Ce . Mz . Ce) : (Ml . Ce)f' (Cg)
4 4 4
e Intermediate results
Mz : (M] . Ce) = tr(b;l -y - m1)1416, (C9)
(C.-M, - C.) : (M - C,.) = tr(b, - my - m;) I, 1. (C.10)
e Final result
—~ 1
ZaniZ : sym(M1 . Ce)f 7é Tani2 - My. (Cll)
4

Appendix D

The purpose of this appendix is to prove the statement

sign(t : m;) = sign (Z :sym(M; - Ce)L) (D.1)

2i+2
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Due to (20), this boils down to show

. —~ 1
sign (Tuniz 1 My) = sign (EaniZ : sym(M, ~Ce)—> . (D.2)
—_—— 1

T

Ey
The expressions E; and Ey are in detail expressed as
Er = 2[6(W6tr(m2 . ml) + W7 tr(be My -m; +m; -m, - be))7

1 1 (D.3)
Es = 216(W6tr(bg -mj - ml) + W7[7‘[I‘(b§ -1my - m1) —|—tr(be -1my - m1))

Exploiting the assumption made at the end of Section 3.1, it can be guaranteed that the terms W and W,
are always positive. Thus, we have to prove that the expressions tr(A-m, -m;) with A=1, A = b;l or
A = b, respectively, have always the same sign.

For this purpose, we use the spectral decomposition

3
A=) "4,0,20¢, (D.4)

J=1

(A4, eigenvalues and ¢, eigenvectors of A) and represent the vectors n; and n; in terms of the eigenvectors ¢,
(I=1,2,3):

3

3
n = Zﬂ[(pl, n, = Zb/(pl. (DS)
I=1

I=1

If two or three eigenvalues of b, are equal, the eigenvectors are chosen such that the orthogonality
@, - @, = 0y 1s fulfilled. The coefficients a; and b, remain undetermined. One obtains

tr(A-my -my) = (m-n)(m-A-ny) (D.6)
and
3003 3 3
n-A-n = Z Zmbﬂ/’[ : ZAK(pK Lok | -0, = ZaKbKAK- (D.7)
=1 J=1 K=1 K=1

Since A is positive definite, its eigenvalues Ax are always positive. The sign of n, - A - n; does not depend
on the fact whether we make the choice A =b,, A = bgl or A = 1. Taking into account further that the
invariants /; (j = 1,...,7) are positive, the latter result guarantees sign £, = signE.
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